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Machine learning relies heavily on access to large and well-maintained datasets. In this article, we focus
on Computer Vision and object detection applications to survey past research on automatic generation of
annotated datasets that does not require costly and time-consuming human labelling. In specific, we analyse
research done in the area of Domain Randomisation applied to Neural Networks predominant in object
detection since the last decade. We propose a set of criteria for comparison of previously published works,
and utilise these criteria to make conclusions about various trends in the area, similarities/differences and key
discoveries made since conception. The purpose of this work is to advise practitioner on leading solutions and
help researchers gain better understanding of the landscape. The key takeaways from our analysis show the
current state of the art solutions within the mid-quartile range allow object detection with typically about 1-25%
performance decrease in comparison to manually annotated datasets; while the top performant approaches
above the upper quartile gain about 2-32% lead over real data training in their specific application areas. Our
survey shows the future outlook is more research into 3D generation techniques, with most innovative yet
complex techniques related to end-to-end modifications of entire network architectures to suit synthetic data
training.
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1 INTRODUCTION
In the second decade of 21st century there was a major shift in Computer Vision (CV) research.
The classical CV approaches used hand-crafted features based on image descriptors such as Scale-
Invariant Feature Transform (SIFT) [33] or Histogram of Oriented Gradients (HOG) [8]. Those
features could be later used as input to regular machine learning models such SVM, Decision Trees
etc., delivering predictions on object locations or object types in images. This methodology was
disrupted by the progress made in Deep Learning which dominates CV research until today. In object
detection task in specific, the accuracy gains in benchmarks such as ImageNet [9] and MSCOCO
[31] to large degree can be attributed to multiple Neural Network architectural innovations (e.g.
AlexNet [29], VGG [53], ResNet [19]). However, outside of such research competitions on fixed
datasets, in real-life applications one of the key hurdles for deployment of award winning solutions
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is availability of annotated domain specific datasets. An asset obtained in a time-consuming manual
human operated process, which is therefore very costly to maintain in a sustainable manner over
time in a business scenario.
One of the answers of research community to the problem of dataset availability is Domain

Randomisation (DR) - an algorithmic approach to generation of so-called synthetic data, ie. data
with objects inserted into images in a randomised or semi-randomised manner, therefore coming
with precise annotations regarding object position in the scene.

The theoretical basis for such approach is belief that there is some finite albeit large distribution
of possible object placements, rotations etc. that covers all images in certain area of application
for object detection. Therefore, the goal for Domain Randomisation is generating a new dataset to
cover to an extent such distribution. In practice, those approaches have a number of shortcomings
related to so-called ’domain gap’, ie. the difficulty to accurately reflect this distribution. Those
difficulties, as well as debate on their reasons and ways of addressing them have generated a number
of innovations published across the several past years. This article is a review of such previously
published work.

Our goal is to synthesise the key innovations and trends in area of Domain Randomisation, show
what can be currently achieved and how does it compare to usage of traditional human crafted
datasets. In order to do so, we propose a number of criteria to distinguish different approaches to
Domain Randomisation as well as pick the relevant ones given domain of application.

We start the reviewwith a simple dichotomy, splitting Domain Randomisation research into 2D or
3D image generation to point out the key contributions and trends in chronological order (see Sec. 3).
Moving on, we compare works based on more detailed criteria pertaining to area of application,
generated dataset characteristics and detection task specifics (see Sec. 4). We use this opportunity to
discuss how authors evaluate their research and compare legitimacy of results based on evaluation
scope and thoroughness of evaluation in each article. Further, for a more scrutinised and systematic
approach, we establish a list of 20 characteristics of Domain Randomisation algorithms and classify
published works based on those (see Sec. 5). By synthesising ablation studies from multiple articles,
we compare which of those 20 techniques are most frequently addressed by researchers and which
are attributed to achieve biggest gains in performance. We list all reported performances and
compare relative gains made within each dataset/domain of application (see Sec. 6). Finally, taking
advantage of earlier introduced DR categories, we plot all innovations on a timeline and review
State of the Art from the perspective of progress done across the years (see Sec. 7). We conclude
the study with remarks for practical use of Domain Randomisation techniques and extrapolate the
earlier presented timeline perspective with an outlook for the future (see Sec. 8).

2 RELATEDWORK
Although some researchers note the need of universal benchmarks for synthetic data generation
[1, 45], so far there hasn’t been any established and commonly followed means of comparing
different approaches published in the literature. A proposal from [2] is to assess synthetic datasets
via measurement of image or image feature distribution distance from the real dataset. This method
omits the task dependant evaluation metrics and only requires images to calculate the metric.
However, beyond the original publication the effectiveness of this approach has not been assessed
or adapted in the state of the art. As can be seen in subsequent sections, publishedworks that propose
new original contributions to Domain Randomisation typically evaluate proposed algorithms only
on their specific target domain dataset and using typical Computer Vision metrics. Frequently, for
many publications the synthetic data, real images and implementation details are not shared. This
makes direct comparison between different publications challenging. In our article, we establish
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several means of comparing published works and intend to give guidelines as per effectiveness and
scope of different methods.
The past surveys of state of the art in synthetic data generation [39, 61] focus on categorising

broad spectrum of published articles and summarise the generation methods. In comparison to
those, we aim at a more quantitive evaluation. Nikolenko [39] reviews all applications of synthetic
data and charts the general landscape. He gathers a huge amount of references and shows a top level
overview of major trends in multiple areas. We assume a narrower scope of Object Detection and
Domain Randomisation only, which allows us to give a more in-depth and fine-grained comparison.
Similarly to Nikolenko, we also leave out the review of data augmentation techniques as a separate
topic and direct the reader towards plenty of other works already analysing this area [52, 64]. In
comparison to [61] who delivers a qualitative comparison of synthetic data techniques, we propose
to review published works in quantitive terms of the relative accuracy gains in comparison to their
domain baselines and by systematically describing the scope of data generation against a proposed
taxonomy.
All works analysed in aforementioned synthetic data surveys as well as in this article pertain

to Neural Network research in specific. However, it should be noted that prior to Deep Learning
boom in CV, scientists have considered using synthetic data for training classical machine learning
algorithms as well, e.g. based on HOG. Attempts very similar to current Domain Randomisation
were employed for goals of Object Detection (e.g. [56] or [55]). Many past ideas related to data
generation keep coming back in recent research, however we omit those classical CV papers in our
study as the gains in performance reported in those works are not evaluated in terms of Neural
Networks and might give different results.
Likewise, studies on synthetic data generation go beyond application in vision into areas such

as Natural Language Processing [14] or tabular data [15]. The parallels between those and vision
have been already reviewed by Nikolenko is his study [39]; while the individual achievements for
each domain have been reviewed in the highlighted surveys. We refer the reader to those works for
more details, in our article we focus on the challenges ahead of the narrow area of Object Detection
and Domain Randomisation.

3 OVERVIEW OF PUBLICATIONS AND CONTRIBUTION AREAS
The methodology used for listing all candidate papers for this survey is based on: i) reviewing all
articles from aforementioned past state of the art surveys in synthetic data; ii) further following
references from all obtained papers in step 1; iii) supplementing the list with papers found via
keyword web search and academic aggregator services. For step 3, we used Google Scholar and
analysed top 50 papers from three following keyword searches: "domain randomisation", "domain
randomisation object detection", "synthetic data object detection". Out of 150 papers analysed in
this final step, 96 were unrelated to this study, while 39 were re-occurrences found via previous
methodology steps. For all steps of our methodology the criteria used for including articles in this
study is as follows: i) perform object detection; ii) utilise Neural Networks; iii) generate new data
without necessity for human annotation; iv) report performance measures, specifically mAP.

After following the described methodology we ended up with a list of 37 articles published
between 2015 to 2022. We further divided those works into 4 main categories: core works that
propose new innovations to the area of Domain Randomisation (23 articles); comparative studies
that do not propose any innovation but evaluate different research directions for a selected aspect
of Domain Randomisation (4 articles); evaluations of software frameworks (2 articles); applied
research that only describes application of known methods to new areas (8 articles). All considered
works are listed in Table 1 in chronological order.
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Fig. 1. Examples of synthetic data: red bounding boxes mark objects added on top of 2D background. (a) 2D
objects cut out from images and plotted onto new background [11]; (b) rendered 3D objects inserted using
horizontal plane detection [17].

The process of data generation implemented in those publications is based on placement of
foreground objects meant for detection onto some background scene. In terms of articles that offer
algorithmic contributions to Domain Randomisation, typically authors choose one of two methods:
i) use regular pinhole camera photos to create new 2D images via cut and paste technique; or ii)
use of 3D models and rendering engines (see examples on Figure 1). In both scenarios, the final
output are 2D images that can be supplied as training data for typical object detectors such as
Faster RCNN [49], SSD [32] etc.

Across all published work, there is a visible distinction on how the aforementioned "domain gap"
should be addressed: some authors try to create photo realistic images, while others experiment how
far simplistic synthetic data can go until it impacts performance. In between those two extremes,
a group of works shifts focus to other aspects such as adjusting Neural Network training [21],
sourcing object models efficiently to ensure better coverage of target domain [62].

The non-realistic approach to Domain Randomisation was pioneered by [11] with 2D foreground
objects cut from photos by detecting boundaries with a Neural Network and afterwards placing
objects onto random photo backgrounds from a different dataset. In Dwibedi approach, all parame-
ters regarding object placement are randomised within some predefined boundaries. Instead of
focus on realism, Dwibedi is one of the first that applied blending to foreground objects on the
premise that pasted artefacts onto backgrounds have superficial boundary pixel differences due to
different lighting or imperfections in cutting images. Blending allows to avoid Neural Network
detecting pixel boundaries and generalise to object features that are also present in real images.
Those techniques were later used in multiple applied works as well as extended in research. [35]
proposed pasting segments of objects to simulate occlusion, while [60] expanded on concept of
accommodating for object boundaries by placing similarly cut distractor objects into background.
Both [65] and [16] take advantage of those cut-paste techniques but additionally apply generative AI
to improve the final detection performance. [16] uses Stable Diffusion [50] to generate contextually
meaningful backgrounds; while [65] adds image post-processing with GAN [25] for foreground
to increase distribution size and shrink the domain gap. Moving towards realism in 2D approach,
several works propose different ways of realistic object placement and orientation. [10] attempt to
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Table 1. Key contributions by article, chronological order*. Novelty Areas: 2D- 2D data generation; 3D- 3D
data generation; NN- Neural Network modification; CS- comparative study; AA- area of application; FW-
software framework

AUTHORS YEAR AREA KEY CONTRIBUTION
Peng et al. [44] 2015 (3D) Plain object texture/ plain background
Dwibedi et al. [11] 2017 (2D) Object cuts; Blending objects and background
Mitash et al. [38] 2017 (3D) Realistic object poses / physics engine to simulate gravity
Georgakis et al. [17] 2017 (3D) Realistic object placement / detect horizontal surfaces
Hinterstoisser at al. [21] 2018 (NN) Freezing backbone weights for synthetic training
Dvornik et al. [10] 2018 (2D) Predict object placement using Neural Network
Borrego at al. [5] 2018 (3D) Use of simple shapes / artificial textures (colour, gradient)
Tremblay et al. [59] 2018 (3D) Use of Distractor objects
Nogues et. al. [40] 2018 (3D) Post-processing synthetic images for realism
Wrenninge et. al. [63] 2018 (3D) Physically based rendering (3D background / outdoor)
Hinterstoisser et al. [22] 2019 (3D) Background generated from distractor 3D objects
Mahmood et. al. [35] 2019 (2D) Simulate occlusion by segmenting object and paste parts
Prakash et. al. [47] 2019 (3D) Procedural/parametric scene generation
Wong et. al. [62] 2019 (3D) Photogrammetry to create 3D objects from photos
Tripathi et. al. [60] 2019 (NN) Predict object placement/rotation with Neural Network
Kar et. al. [27] 2019 (NN) Estimation of DR parameters with Neural Network
Hodaň et. al. [23] 2019 (3D) Physically based rendering (3D backgrounds / indoor)
Chengsong et. al. [24] 2021 (NN) Semi-supervised learning on top of synthetic training
Hughes et. al. [26] 2021 (3D) Use of differential rendering / Adversarial samples
Eversberg et. al. [12] 2021 (3D) Physically based rendering with 2D backgrounds
Clement et. al. [7] 2021 (NN) Split detection and classification, GAN based blending
Yun et. al. [65] 2021 (2D) Domain Adaptation to support synthetic data pipeline
Ge et. al. [16] 2022 (2D) Generative AI used for synthetic backgrounds
Arcidiacono et. al. [3] 2018 (CS) Comparison of 3D vs. 2D
Lidberg et. al. [30] 2018 (CS) Comparison of 3D vs. 2D
Nowruzi et. al. [41] 2019 (CS) Impact of synthetic data quantities
Fabbri et. al. [13] 2021 (CS) Impact of synthetic data diversity
Heindl et. al. [20] 2021 (FW) framework for data generation
Borkman et. al. [4] 2021 (FW) framework for data generation
Param et. al. [48] 2017 (AA) Fridge items detection
Buls et. al. [6] 2019 (AA) Object piles / grappling
Shermeyer et. al. [51] 2021 (AA) Arial detection
Zhang et. al. [66] 2021 (AA) Weed detection in soil
Madan et. al. [34] 2021 (AA) Icon detection in iconographic
Mao et. al. [36] 2021 (AA) Bird detection
Khirodkar et. al. [28] 2021 (AA) Car detection in parking lots
Margapuri et. al. [37] 2021 (AA) Seed detection
*Articles below the dashed line do not contribute any significant new Domain Randomisation method
applicable universally. Those works limit to new area of application for DR or evaluate some aspects of DR
generation.

find the correct placement by teaching a model to detect object surroundings through constructing
training data with target objects occluded. [60] include object detector into the data generation
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process and train their model end-to-end in adversarial manner to estimate foreground object
orientation and position.
Similar directions in research can be also observed in the data generation based on 3D models.

The works that go towards simplicity are: [44] who experiments with variety of simple plain color
textures and backgrounds; [5] furthers that study with use of simple geometric shapes as templates
for detection; [59] proposes use of such primitives as distractors rather than objects for detection;
[22] creates entire backgrounds from such irrelevant distractor objects. In the photo-realistic camp:
[38] evaluate impact of realistic poses on detection accuracy; while [17] focus on realistic placement
of objects in scenes. The extent to which photo-realism helps is also evaluated by some in later
stages of scene generation via Physically Based Rendering (PBR) [12, 23, 63] or post-processing
rendered images with GANs [7, 40]. Several works move towards simulators and try to create
realistic 3D scenes with randomised elements constrained by rules [47] or scene graphs [27].

The comparison between realistic and non-realistic approaches in an ongoing debate and to our
knowledge there has not been a comprehensive attempt at evaluation which could perform better
and to what degree in similar conditions. There have been works that tried to put side by side 2D
and 3D methodologies: [3] as well as [30] concluded 3D approach giving more promising results.
However, both publications employ DR methods far more simplistic in comparison to state of the
art techniques. The direct comparison of state of the art methods based on experimental results
published in original publications is hard as frequently each publication uses different datasets and
experiment settings. In the next section, we summarise per each paper those differences in more
detail and propose to compare approaches via coverage of Domain Randomisation techniques.

4 DATASET SCOPES AND APPLICATION AREAS
The majority of reviewed articles evaluate their innovations via generation of training data for
detection of small/medium shelf items (see Table 2), such as: kitchen items (e.g. [11]), toys (e.g.
[21]), variety of supermarket items (e.g. [22]). Typically those are goods obtainable from regular
stores, with some exceptions such as electronics/ manufacturing (e.g. [40]) or agriculture items
(e.g. [24]). Among bigger objects, the most distinctive group is car detection related to studies on
autonomous driving (e.g. [13, 59]). Remainder of reviewed articles operate on objects from niche
application areas such as satellite imaginary detection [7, 51], animal detection [35, 36], document
element detection [34].

Depending on the application area and its requirements, authors utilise their synthetic datasets
to train machine learning model for detection of different amount of objects. Typically studies use
models trained for less than 10 distinct objects (65% articles); more rarely between 10-50 objects
(25%); with several exceptions that go beyond 50 objects [4, 22, 48] and up to 100 objects at most
[51]. As noted by [18] the count of objects on the image, their distribution and visual differences
affect performance of state of the art algorithms; making it necessary to adjust networks to better
fit the particular goal.
Therefore, to show their performance gains for specific application areas, authors of Domain

Randomisation typically obtain a manually labelled dataset for training and use it as baseline
indication of what can be achieved in their domain of interest with regular data sourcing techniques.
Subsequently, synthetic dataset is constructed and both methods are evaluated on manually labelled
test set with state of the art detectors. About 45% of articles utilise public datasets, while the
remainder create their own labelled data. Across the published works, the size of manually labelled
train data typically is in range of several hundred (31% of articles) or several thousand samples
(40%); the smallest reported train set is 175 samples [5], while the biggest is 20 thousand [21]. The
test sets are in similar size range across studies; however typically per individual article smaller
than train. The sizes of synthetic train datasets vary greatly from paper to paper, however most
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Table 2. Detailed components of methods per article

OBJECT CLASS GENERATION TRAIN SIZE TEST
AUTHORS TYPE COUNT FGRD BGRD (synth) / (real) SIZE
Peng et al. [44] VOC classes 20 3D (render) 2D (s) 2k / (r) 2.5k 4.9k
Dwibedi et al. [11] Kitchen Items 7 2D (360) 2D (s) 6k / (r) 3-5k 1.5-3k
Mitash et al. [38] Shelf items 11 3D (render) 3D (s) n/a / (r) n/a 2.2k
Georgakis et al. [17] Kitchen Items 11 / 5 2D (360) 2D (s) 6.7k / (r) 4k 6.7k
Hinterstoisser at al. [21] Toys/ kitchen 10 3D (scan) 2D (s) n/a / (r) 20k 1k
Dvornik et al. [10] VOC classes 1 / 20 2D (cut) 2D (s) n/a / (r) 1.4k 4.9k
Borrego at al. [5] Kitchen Items 3 3D (render) 2D (s) 30k / (r) 175 49
Tremblay et al. [59] Cars 36 3D (render) 2D (s) 100k / (r) 6k 500
Nogues et. al. [40] Electronics n/a 3D (render) 2D (s) 10k / (r) n/a 100
Wrenninge et. al. [63] Cars 19 3D (render) 3D (s) 25k / (r) 6k 500
Hinterstoisser et al. [22] Market Items 64 3D (scan) 3D (s) n/a / (r) 1.1k 250
Mahmood et. al. [35] Lobster 1 2D (cut) 2D (s) 1k / (r) 187 50
Prakash et. al. [47] Cars 1 3D (render) 3D (s) 25k / (r) 6k 7.5k
Wong et. al. [62] Market Items 10 3D (render) 2D (s) 100k / (r) 600 1k
Tripathi et. al. [60] Kitchen Items 11 2D (cut) 2D (s) n/a / (r) 3-5k 6.7k
Kar et. al. [27] Cars 1 3D (render) 3D (s) n/a / (r) n/a 7.5k
Hodaň et. al. [23] Shelf objects 8 / 14 3D (render) 3D (s) 48k / (r) n/a 1.3k
Chengsong et. al. [24] Plants 4 2D (cut) 2D (s) 1.2k / (r) 200 500
Hughes et. al. [26] Kitchen Items 9 3D (render) 2D (s) 3k / (r) 3-5k 1.5-3k
Eversberg et. al. [12] Industry obj. 1 3D (scan) 2D (s) 5k / (r) 200 650
Clement et. al. [7] Airplanes 1 3D (render) 2D (s) n/a / (r) n/a n/a
Yun et. al. [65] Kitchen Items 11 2D (360) 2D (s) 6k / (r) 4-5k 1.5-3k
Ge et. al. [16] VOC classes 20 2D (cut) 2D (s) 60k / (r) 1.4k 4.9k
Arcidiacono et. al. [3] Industrial obj. 6 2D / 3D 2D (s) 10k (r) 500 500
Lidberg et. al. [30] National flags 3 2D / 3D 2D (s) 1.5k (r) 264 150
Nowruzi et. al. [41] Persons n/a 3D 3D (s) 200k (r) 13k 2k
Fabbri et. al. [13] Persons n/a 3D 2D (s) 1.3m (r) n/a 5.9k
Heindl et. al. [20] Industrial obj. 6 3D (render) 3D (s) 50k (r) 10k 10k
Borkman et. al. [4] Market Items 63 3D (scan) 3D (s) 400k (r) 760 254
Param et. al. [48] Kitchen Items 55 3D (render) 3D (s) 4k (r) 400 50
Buls et. al. [6] Bottle/can 2 2D (360) 2D (s) 6k (r) n/a 1.5k
Shermeyer et. al. [51] Airplanes 100 3D (render) 2D (s) 45k / (r) 253 n/a
Zhang et. al. [66] Fruits 2 2D (cut) 2D (s) 3.1k / (r) 1.3k 450
Madan et. al. [34] Icons 1 2D (cut) 2D (s) 10k / (r) n/a 1.4k
Mao et. al. [36] Birds n/a 3D (render) 2D (s) 1k / (r) 900 110
Khirodkar et. al. [28] Cars 1 3D (render) 3D (s) 10k / (r) 5.6k 200-800
Margapuri et. al. [37] Seeds 40 2D (cut) 2D (s) 6.8k / (r) n/a 150

often are several times greater than manually labelled baselines; the smallest ones are around one
thousand samples [24, 35, 36]; the biggest 1.3 million [13].
The generation process of synthetic images from those datasets consists of two key parts: fore-

ground and background. In publications that use 3D objects for foreground (71% of all articles),
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authors obtain their models from public repositories (e.g. [26] from BigBIRD [54]); prepare hand-
crafted models (e.g. [5] using 3D primitives); or digitalise object models via 3D scanning (e.g. [22])
or other reconstruction techniques [62]. Subsequently such objects are plotted over either 2D
background (56%) or 3D backgrounds (44%); with final output processed with rendering engine to
add textures, lighting, shadows etc. For the 2D approach (37% of all articles) foreground objects
are sourced through cutting them out from regular photos (e.g. [10, 23, 35]) or from specially
crafted images with objects of interest photographed from different angles over uniform color
backgrounds to ease the cutting process [6, 11, 17]. Later, in majority of publications those objects
are pasted over 2D images taken from various thematically related datasets disjoint with object
detection training or test sets (64%); in other cases backgrounds are obtained via photography done
by publication authors of related scenes or environments (21%); or in some experimental cases
uniform backgrounds [6] or AI generated backgrounds [16].

In the final step, the foreground and background objects are composed into the scene of synthetic
image based on rules that very depending on the publication and approach taken by authors - we
detail and classify such composition techniques in the next section.

5 CLASSIFICATION SCHEME FOR DOMAIN RANDOMISATION TECHNIQUES
Following the Domain Randomisation paradigm, authors of reviewed publications assume some set
of parameters that describe properties of objects common for all generated scenes; and subsequently
vary those parameters across synthetic images in order to obtain a broad distribution of samples in
the dataset. In order to organise the contributions in a systematic way, we propose to list all those
variables as they are reported in the reviewed publications. Subsequently, as shown on Figure 2, we
group the DR parameters based on elements of the scene they affect:

• (F) foreground - objects to be detected
• (B) background - background photos/images or backgrounds composed of multiple objects
• (D) distractor objects / occlusion - similar as foreground objects but not being subject of
detection

• (C) camera - modifications on how all elements of scene are captured
• (L) lights - lighting definition for entire scene
• (N) noise - image post-processing application to add distortion
• (R) blur - image post-processing used to smooth differences between background and all
objects

Outside of the foreground and background already highlighted in previous section, distractor
objects are another addition to the scene mentioned in multiple articles. Those are inserted either
behind the foreground or in front to occlude it. The key role of distractors is to prevent the network
from discriminating foreground objects based on deficiencies of insertion technique but on true
object features. For example, in 2D cut-paste approaches without distractors the network can learn
to detect inserted objects based on their lighting and colour shades standing out from background
rather than low-level shape features (e.g. circular shape of ball) or high-level visual elements (e.g.
car tires, pedestrian body parts). For techniques that relate to camera, lighting and noise; the main
purpose is increasing the variance of scenes to better fit the target distribution as well as increasing
realism. The blur techniques are mainly utilised as a tool to conceal transition from foreground to
background.

For each of the parameters in those groups, there are different methods to achieving variability
across dataset samples. Broadly, we propose to put them into three categories that appear in
literature: (x) randomised value within some assumed preset range; (p) value asserted in algorithmic
or procedural way based on context of the image, may or may not include random sampling; (f) fixed
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Fig. 2. Illustration of proposed categorisation for Domain Randomisation techniques and its relationship to
the scene in the generated synthetic image.

value across all samples. The breakdown of particular generation techniques against parameter
groups is listed in Table 3; contributions are marked as using a certain technique only if it’s
mentioned explicitly in the article.

The most frequently used technique is simple randomisation within a preset range (accounts for
66% of all reported DR usage). Typical examples are: placement of foreground objects positioned
at random coordinates within the image resolution boundaries (12% of all simple randomisation
usage), random rotation angle of foreground object within some range of degrees (11%), or random
background from a set of predefined backgrounds (10%). Such techniques are core to DR and were
proposed in early stages of research in the area (e.g. [11]). Currently, those are typically repeated
by other authors in their implementations as a supplementary means to the main contribution.
The more sophisticated approaches, denoted by "p" - procedural, require some additional logic
to determine parameter value. In comparison to regular randomisation, those refer to 22.8% of
total reported DR usage. Similarly, procedural techniques are most typically applied for calculation
of foreground object position and rotation (respectively 17% and 15% of all procedural DR use).
Some examples are: assuring that all rotation angles are equally represented in the dataset [22];
prediction of object position using neural network [10]; prediction of position based on horizontal
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Table 3. Domain Randomisation techniques per article ("x" - randomised value per sample, "p" - procedural
or algorithmic approach beyond simple randomisation,"f" - one fixed method applied to all samples)

ARTICLE F1 F2 F3 F4 F5 B1 B2 B3 D1 D2 D3 C1 C2 C3 L1 L2 L3 L4 N1 R1
Peng et al. [44] x x x
Dwibedi et al. [11] x x x x x x x f
Mitash et al. [38] x x x f f x x
Georgakis et al. [17] x p p x x f
Hinterstoisser at al. [21] p p x x x x f f
Dvornik et al. [10] p p p x
Borrego at al. [5] x x x f f f f
Tremblay et al. [59] x x x x x x x x x x x x
Nogues et. al. [40] x p x p x x p
Wrenninge et. al. [63] p p p p p p p p
Hinterstoisser et al. [22] p p x p x p x x x x x x x x
Mahmood et. al. [35] x x x x f
Prakash et. al. [47] p x p p p p p p p p x x x x x x
Wong et. al. [62] x p f x p p x p x
Kar et. al. [27] p p p p p x x
Hodaň et. al. [23] p f f p x x
Chengsong et. al. [24] x x x x x f
Hughes et. al. [26] x x x
Eversberg et. al. [12] x x x x f x x x x x x x x x
Clement et. al. [7] x p x f
Yun et. al. [65] x x p p x p p x x f
Ge et. al. [16] x x x x p f
Arcidiacono et. al. [3] x x x x x x x f x
Fabbri et. al. [13] p p p p p f f f
Heindl et. al. [20] p x p f x x
Borkman et. al. [4] x x x x x x x x x x f x x
Param et. al. [48] x x x x x x p
Buls et. al. [6] x x
Shermeyer et. al. [51] p x x
Zhang et. al. [66] x x x x x x x x x x
Madan et. al. [34] f p f x
Mao et. al. [36] x x x x x x f
Khirodkar et. al. [28] x x x x x x x x x
FOREGROUND - F1: rotation; F2:scale; F3: texture; F4: position; F5: count | BACKGROUND - B1: Texture/background image; B2: Color; B3: rotation
DISTRACTORS - D1: count; D2: rotation; D3: position | CAMERA: C1: position; C2: rotation; C3: field of view | LIGHTS - L1: count; L2: position; L3: orientation;
L4: specular characteristics | NOISE - N1: type / count | BLUR - R1: type / location

planes detection for shelf/floor detection [17]. On the opposite side of spectrum, sometimes authors
use same technique without any variance across all dataset samples (11.2% of all DR usage). This is
frequently done in order to improve overall performance that relates to some deficiencies of neutral
network design or issues with the overall DR methodology. An example of such use is application
of blur to conceal pixel boundaries between foreground objects and background (e.g. Gaussian blur
is used by [21] on all samples, while [10] uses random blur method from a pool of predefined ones).
Analysing the usage of those various techniques across the state of the art in Table 3 it can be

observed that foreground generation is the key area where most scientists focus their efforts. 43% of
all reported DR implementations are related to various forms of foreground object randomisation;
followed by 15% lighting parameters; 13% distractor objects; 12% background; 10% camera; 4% blur
and 1% noise. Likewise, looking at each individual article separately, the coverage of techniques in
foreground group is greatest: on average 3 out of 5 technique types in foreground group are used
in each reviewed article (STD = 0.9), while for all other groups 1 or less. This trend looks similar if
we segment separately simple randomisation techniques as well as procedural randomisation.

Apart of the focus on foreground generation, several articles stand out by covering a particularly
wide spectrum of techniques across all groups. [47] experiments with 16 out of 20 defined techniques
as they propose a simulator like approach with the entire 3D scene constructed from scratch. This
requires a lot of attention to detail and catering for many variables to achieve realism. As a result,
the same article also leads in amount of procedural DR use with its key contribution of structured
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randomisation, ie. usage of rules per each parameter for generation of scene. In comparison, the
remaining articles that put emphasis on amount of techniques go in a different direction mostly
opting for simple randomisation. [22] and [59] abandon effort for realistic scenes and put emphasis
on scene variance in the background and distractor layer; [12] similar as [47] opt for realism but
achieve it with improving rendering quality rather than scene organisation. Comparing the statistics
for those works as summarised in previous sections, it can be seen that usage of big amount of DR
techniques is not always followed by exhaustive evaluation or introduction of new innovations to
DR. Notably, [4] provide one of the most comprehensive implementations in the state of the art but
do not propose any novelty; [66] as well as [12] also cover a wide range of techniques but provide
very small scale evaluations of their proposed innovations. Furthermore, as shown in next section,
the amount of DR techniques used does not necessarily go hand in hand with performance gains.

6 PERFORMANCES COMPARISON
The reported performances in Domain Randomisation publications are frequently tested in different
conditions. The spectrum of application areas in the state of the art is quite wide: detected objects
have varying characteristics (e.g. size, visual complexity); captured scenes may have different
lighting conditions; different backgrounds etc. Likewise, the evaluation datasets have different
distributions, sizes; and are input into different state of the art object detection algorithms. The solu-
tions described in this survey span more than 7 years between 2015 til present - a considerable time
in terms of object detection neural network design and significant performance hikes as reported
by [67]. In this context, multiple DR authors show that different networks vary in performance on
same synthetic training and test sets [13, 59]. Furthermore, results from [17] show that combination
of network architecture and detected object type plays a role and performance can very a lot more
than one might expect extrapolating from a network trained on real data. All those factors make it
hard to craft a scientifically credible comparison of subsequent DR contributions; and assess if they
deliver performance gains universally or just in their own narrow context reported by authors. At
the same time, most articles do not disclose implementation details and their code is not publicly
available.
For those reasons, we abandon comparing individual solutions to each other in search for

recommendation of the article with "best" synthetic data generation approach. Instead, we propose
to compare relative performance gains achieved by articles within their own areas and use this to
only derive high-level conclusions about the state of the art performances and observe emerging
trends. Using our earlier classifications of articles and DR techniques, we attempt to connect
repeating performance trends across articles with some broader categories of DR solutions that
they utilise. In order to devise means for such analysis, we propose to look at the relationship
between synthetic data performance to real dataset baseline that each article reports. In specific, we
define two metrics that show relative gain made by new datasets expressed as fraction of baseline
performance:

𝑆𝑌𝑁𝑇𝐻𝐷𝐼𝐹𝐹 =
𝑚𝐴𝑃@0.5𝑅𝐸𝐴𝐿 −𝑚𝐴𝑃@0.5𝑆𝑌𝑁𝑇𝐻

𝑚𝐴𝑃@0.5𝑅𝐸𝐴𝐿
(1)

𝑆𝑌𝑁𝑇𝐻 + 𝑅𝐸𝐴𝐿𝐷𝐼𝐹𝐹 =
𝑚𝐴𝑃@0.5𝑅𝐸𝐴𝐿 −𝑚𝐴𝑃@0.5𝑆𝑌𝑁𝑇𝐻+𝑅𝐸𝐴𝐿

𝑚𝐴𝑃@0.5𝑅𝐸𝐴𝐿
(2)

In above equations, all input performances are expressed using a popular metric for object
detection that is reported in all analysed DR papers for all experiments - mean Average Precision
(mAP) at Intersection over Union (IoU) threshold equal to 0.5 [43]. The newly defined metrics
allow to partially abstract from the dataset context and understand the magnitude of gains made by
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different algorithms expressed in a more universal manner than raw mAP metrics - ie. the starting
baseline mAP for each article is different, therefore using relative measure we can abstract from that
to tell which articles and what techniques make significant progress in their respective application
areas. The SYNTH and SYNTH+REAL notations relate to experiments that DR authors typically
conduct in order to asses the performance of their solution - measurement of object detection
performance on real, human annotated test dataset using a model trained on: (1) exclusively
synthetic data; (2) mix of real and synthetic data. The first experiment typically aims to show if
synthetic data can fully replace real human annotated datasets; the second if synthetic data can
boost the regular performance and if it can be used to decrease the amount of human annotation
labour rather than fully eliminate it.
In our methodology, for each article we capture the single best result reported; we ignore all

intermediate experiments and results on datasets that give lesser gain. (in case of articles that
publish experiments on several datasets). E.g. [60] test on GMU Kitchen and Pascal VOC but their
improvement for Pascal is only 0.75%, while for GMU 4% therefore we report experiments on GMU
for that article. The complete set of all results can be found in Table 4.
Among the reviewed work, only 5 out of 20 articles report gain in mAP for synthetic trained

model vs. real data trained model. However, out of those five cases, only [22] proposes innovation
in terms of DR techniques and methodology, other top performant publications achieve their
results through different means. All of those contributions use 3D models and just one advocates
the realism approach [7]. Two articles try to solve market item detection [22, 62], two broadly
understood industrial object detection [13, 20] and one relates to overhead imaginary analysis
for detection of airplanes [7]. Out of those, [62] reports the biggest performance gain (31%) by
recreating 3D objects from regular photos using photogrammetry. [22] follow with 17% increase of
synthetic trained model over real data which they attribute to a method that distributes evenly the
DR parameter values. According to [7] their performance gains (4.1%) can be achieved by splitting
detection and classification, however contrary to predecessors the details of their test sets are
not revealed. [13] achieve their 3.94% gain over baseline by experimenting with dataset diversity
arguing that it’s more important than scale. Among other works that do not report exceeding
baseline performance, those between 1st and 3rd quantile score 1%-25% decrease in performance in
comparison to real data trained models.

On the lowest performant side of the spectrum, the detection accuracy is reported to go as low
as 60% or 90% decrease (respectively [44] and [35]). Looking at experiments with mix of real and
synthetic data used for training, the results seem a lot more consistent across the state of the art
with 77% articles reporting synthetic data giving edge over baseline. The magnitude of such increase
is typically several percent (ie. less than 10% performance increase for 65% of the aforementioned
cases); with some exceptions in 16-32% performance increase range.
In order to discover which techniques attribute to biggest mAP gain, DR articles perform an

ablation study - re-train the same model on different synthetic data that was created with removal
of one technique per experiment. This way it’s possible to note the impact of parameter absence
on the overall performance. The articles that deliver such studies and their results have been
summarised in Table 5.

The analysis of results shows that majority of impactful techniques is located in foreground area
(9 out of 12 studies). Within this group, technique giving highest relative gains in comparison to
baseline is reported by [22]. In that study, a performance hit of 75% relates to replacing randomised
amount of objects inserted into synthetic image (up to 20 objects); compared to a routine that
generates all training data with single object per image. [48] confirm the usefulness of object count
randomisation by testing synthetic data performance changes with 10-400 distinct objects, however
they also show that there is a limit to performance increase albeit without explanation to it’s
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Table 4. Algorithm performance per article. Original performance measures (REAL, SYNTH, REAL+SYNTH)
all refer to mAP@0.5 metric [43]; metric values are taken directly from corresponding articles as reported
by their authors. Four last columns (marked with "DIFF") depict performance gain/hit connected to using
synthetic data*. Performance gains are marked with bold.

ARTICLE REAL SYNTH REAL+
SYNTH

SYNTH
DIFF

SYNTH
DIFF(%)

REAL+
SYNTH
DIFF

REAL+
SYNTH
DIFF(%)

Peng et al. [44] 0.58 0.19 0.31 -0.39 -67.24 -0.27 -46.55
Dwibedi et al. [11] 0.86 0.76 0.89 -0.10 -11.70 +0.02 +2.89
Mitash et al. [38] 0.75 0.70 n/a -0.05 -6.66 -0.1 -13.51
Georgakis et al. [17] 0.83 0.52 0.85 -0.39 -37.40 +0.02 +3.03
Hinterstoisser at al. [21] 0.99 0.97 n/a -0.01 -1.01 n/a n/a
Dvornik et al. [10] 0.58 n/a 0.62 n/a n/a +0.04 +6.89
Borrego at al. [5] 0.66 0.58 0.83 -0.83 -12.03 +0.17 +26.08
Tremblay et al. [59] 0.96 0.78 0.98 -0.18 -18.98 +0.02 +2.17
Wrenninge et. al. [63] 0.54 0.34 0.90 -0.20 -36.64 -0.20 -36.64
Hinterstoisser et al. [22] 0.76 0.89 n/a +0.13 +17.10 n/a n/a
Mahmood et. al. [35] 0.21 0.02 0.49 -0.19 -90.40 +0.28 +133
Prakash et. al. [47] 0.85 0.77 0.89 -0.08 -9.41 +0.04 +4.7
Wong et. al. [62] 0.64 0.95 n/a +0.31 +32.67 +0.31 +32.67
Tripathi et. al. [60] 0.86 n/a 0.89 n/a n/a +0.03 +4.05
Kar et. al. [27] n/a 0.66 n/a n/a n/a n/a n/a
Chengsong et. al. [24] 0.51 0.46 n/a -0.13 -25.50 n/a n/a
Hughes et. al. [26] 0.89 0.42 0.90 -0.47 53.20 +0.01 +1.57
Eversberg et. al. [12] 0.99 0.99 1.00 0.00 00.00 +0.01 +1.52
Clement et. al. [7] 0.73 0.76 0.68 +0.03 +4.10 -0.05 -6.9
Yun et. al. [65] 0.86 0.81 n/a -0.05 -5.81 n/a n/a
Ge et. al. [16] 0.45 0.43 0.52 -0.02 -4.44 +0.07 +15.5
Arcidiacono et. al. [3] 0.85 0.80 0.91 -0.05 -5.98 +0.06 +1.52
Lidberg et. al. [30] 0.90 0.74 0.94 -0.16 -17.77 +0.04 +4.47
Nowruzi et. al. [41] 0.39 n/a 0.43 n/a n/a +0.04 +8.97
Fabbri et. al. [13] 0.76 0.79 n/a +0.03 +3.94 n/a n/a
Heindl et. al. [20] 0.72 0.74 n/a +0.02 +2.77 n/a n/a
Borkman et. al. [4] 0.72 0.54 0.85 -0.15 -25.00 +0.13 +18.78
Param et. al. [48] 0.28 0.24 0.36 -0.04 -14.20 +0.08 +28.57
Shermeyer et. al. [51] 0.97 0.87 0.95 -0.10 -10.12 -0.01 -1.54
Madan et. al. [34] 0.66 0.44 n/a -0.22 -33.00 n/a n/a
Mao et. al. [36] 0.34 n/a 0.40 n/a n/a +0.05 +16.08
Khirodkar et. al. [28] 0.99 0.99 n/a 0.00 00.00 n/a n/a
* Difference between algorithm performance ran on real vs. synthetic dataset, expressed as percent of real
dataset performance.

relationship with test set distribution. [24] also examines this technique and shows its benefits
but concludes background colour adjustments as more useful. Amongst other studies, particularly
interesting is foreground object positioning as it has been confirmed as key by multiple authors
in various settings of realistic scene composition: [38] using physics engine, [17] contributing
horizontal surface detection and [10] using neural networks to predict most likely object location. In
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Table 5. Domain Randomisation ablation studies per article. Values indicate drop in mAP@0.5 performance
when removing the selected technique (expressed as fraction of synthetic performance with all techniques;
zero value indicates technique not used in study). Most impactful techniques per article marked with bold.

ARTICLE F1 F2 F3 F4 F5 B1 B2 B3 D1 D3 L1 L2 L4 N1 R1
Peng et al. [44] .18 0 .18 0 0 .07 0 0 0 0 0 0 0 0 0
Dwibedi et al. [11] .10 0 0 .16 0 0 0 0 .03 0 0 0 0 0 .13
Mitash et al. [38] .55 0 0 .55 0 0 0 0 0 0 0 .08 .08 0 0
Georgakis et al. [17] 0 .15 0 .15 0 0 0 0 0 0 0 0 0 0 .06
Dvornik et al. [10] 0 0 0 .16 0 0 0 0 0 0 0 0 0 0 0
Borrego at al. [5] 0 0 .62 0 0 0 0 0 0 0 0 0 0 0 0
Tremblay et al. [59] 0 0 .06 0 0 0 0 0 .01 0 .08 0 0 0 0
Hinterstoisser et al. [22] .29 .29 0 0 .75 .50 .04 .49 0 0 .07 0 .15 0 .10
Prakash et. al. [47] 0 0 .16 0 0 .13 0 0 0 .05 0 0 .04 0 0
Chengsong et. al. [24] 0 0 0 0 .23 .02 .47 0 0 0 0 0 0 0 0
Param et. al. [48] 0 0 0 .58 0 0 0 0 0 0 0 0 0 0 0
Madan et. al. [34] 0 0 0 .26 0 .76 0 0 0 0 0 0 0 0 0
FOREGROUND - F1: rotation; F2:scale; F3: texture; F4: position; F5: count
BACKGROUND - B1: Texture/background image; B2: Color; B3: rotation
DISTRACTORS - D1: count; D2: rotation; D3: position | CAMERA: C1: position; C2: rotation; C3: field of view
LIGHTS - L1: count; L2: position; L3: orientation; L4: specular characteristics
NOISE - N1: type / count | BLUR - R1: type / location

the next section, we plot those and other discoveries of Domain Randomisation area onto timeline
to show how progress was made by subsequent publications; followed by conclusions section
where we try to extrapolate to give advice on domain future and best practices for current use of
existing techniques.

7 DOMAIN RANDOMISATION RESEARCH ACTIVITY AND PROGRESS ACROSS
YEARS

Within the subdomain of Domain Randomisation described in this review, the amount of published
articles has been steadily growing across the years (see Figure 3). However, the amount of new DR
techniques and categories pioneered by their inventors peak in year 2018 (as per categorisation
introduced in Section 5). Up until that year, 70% of the total described techniques were proposed.
Breaking this down by types of DR techniques, we can observe that the early years focused more on
innovating simple value randomisation within a preset range, with more procedural contributions
in 2018 and 2019. Throughout the analysed period, each year we can see a similar level of use for
fixed value methodologies. As a whole, we see this trend reflecting the maturing complexity of
proposed solutions: original contributions delivered simple to implement variable randomisations
but pioneered use of all Domain Randomisation categories and techniques; the later innovators
often propose more sophisticated ways of generating synthetic data but within those earlier defined
technique categories and boundries. The stable presence of fixed value methods is related to the
fact the often authors focus only on certain range of randomisation techniques and others are
simplified.
This quantitive analysis of new DR techniques across the years does not however tell the full

story of Domain Randomisation research progress. While initial publications have focused on
technically simpler challenges, there were important publications throughout the analysed period
with valuable contributions in the early days as well as later years, respective of the domain maturity
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Fig. 3. Chart (1) shows total articles analysed in our review and grouped per publishing year; (2) depicts
count of new techniques contributed in the State of the Art (SoA) for the first time, aggregated per calendar
year; charts (3) present SoA percentage of original contributions broken down per technique type/complexity
across years.

(see Figure 4). The first use of Domain Randomisation registered by us comes from Peng et al. [44]
in 2015 with experiments involving simple 3D objects. The breakthrough in Peng work is related
to usage of synthetic data for training of Convolutional Neural Network as they were just gaining
popularity at that time; the prior works on synthetic data generation from Peng’s perspective
related to legacy approaches like HOG (outside of scope of our interest). Later, the next major
milestone was work by Dwibedi [11] who established cut-paste technique for the first time and
added blending (which has been reused by most publications ever since). Within the same year
we can observe some first experiments with photo-realism and evaluations on how it helps with
training on synthetic data. Those publications opened the debate between realism and non-realism
in future research. In 2018 a major milestone was addition of distractor objects heavily utilised in
most future works. Likewise work by Hinterstoisser [21] albeit simple in principle was first to take
into consideration not only generation of data but also adjusting the neural network to achieve
better results with such data. Later, in 2019 we can see two major milestones that add a lot more
complexity into the data generation process: (1) structured DR and (2) end-to-end training joint
with generation. The final years of state of the art analysed by us are more predominant of applied
research work taking advantage of those early innovations rather than proposing some major new
additions.
This shows that currently the Domain Randomisation area does not attract as big interest of

breakthrough innovators as it used to at it’s conception (see Figure 4). However, it is clear that key
problems remain unsolved therefore there is still potential for new innovations and multiple future
directions. Some of those we describe in the next section.

8 CONCLUSIONS AND FUTUREWORK DIRECTIONS
The common goal for all reviewed Domain Randomisation research is to construct synthetic datasets
such that would match or even exceed performance that can be achieved with manually labelled
data. The results of our analysis across the current state of the art show this is not yet the case.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. xx, No. x, Article . Publication date: yyyy.



16 Westerski et al.

Fig. 4. Key milestones in Domain Randomisation research as observed across the past years.

Several articles demonstrate promising results but the majority of published work stays in the
1-25% performance decrease bracket in comparison to models trained on manually labelled datasets.
We anticipate the future work to follow the current trend to increase model accuracy using minimal
real data accompanied with synthetic samples rather than fully replacing real data (as depicted in
performance results in Table 4).
Extrapolating from the publication count so far, we can observe that Domain Randomisation

research seems to be shifting towards 3Dmodels. Our study shows that those 3D approaches involve
more variables in comparison to 2D (e.g. lighting, camera, textures as shown in Table 3). This
increased complexity could potentially be the trigger for broader spectrum of current and future 3D-
based research contributions. Additionally, we notice that there is a relationship between modelling
approach and popularity of application areas. A strong representation of articles frommanufacturing
area has better access to CAD models (industry objects detection); likewise autonomous driving
area that traditionally relies on simulators and has a long history of 3D modelling use. We also
noted a substantial amount of robotics related articles that utilise synthetic data with 3D modelling
for policy training [46], position estimation [57] or grasping [58]; however those frequently report
different evaluation metrics, therefore were not included in this study.

Analysing all those articles and future work that they explicitly propose, we can see a consensus
among authors: many mention expanding their innovative proposals to other areas of vision than
object detection, especially towards image segmentation. Otherwise, other popular proposals for
future work advocate increasing synthetic scene complexity, better photorealism and general effort
towards Domain Adaptation [42] as supplementary to Domain Randomisation. Some of the work
in Domain Adaptation as well as synthetic data for image segmentation has been already done,
however its detailed analysis is outside of the scope of this review.

Regarding performance of competitive high level DR technics in object detection (such as 2D vs.
3D, realistic vs non-realistic etc.), our conclusions are in line with past state of the art overviews
[39, 61] - the debate between specific key technical choices is still ongoing. While, some simple
studies show the advantage of 3D based synthetic data over 2D, this does not find reflection in our
analysis of performances from all articles across state of the art. We did not find any significant
correlation between foreground/background modelling method and performance gains. Likewise,
the same can be said about realism vs non-realism approaches as means to close the domain gap.
In terms of innovations proposed so far since the conception of DR domain; we can see that

initial ideas of simple randomisation have evolved into more sophisticated proposals that cater not
only for data generation but alter the network used for training and in some cases object detection.
Albeit this has had mixed results, e.g. jointly generating data and training the object detection
model proposed by [60] shows little performance boost. However, in academic terms, this opens
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room for more innovation via research in alternative neural network architectures that would
support synthetic data training better.

For a practitioner with a need to implement a synthetic data generation pipeline, our recommen-
dation is to start with 2D cut-paste techniques to establish a baseline as this approach requires
least effort and can deliver good results (as shown in [11]). For those practitioners that have more
substantial resources, experimenting with 3D scanning, modelling and scene composition along
with increased photorealism are good directions to follow. Applying the innovations in neural
network architecture for increasing synthetic data performance is the most complex and risky task
out of all reviewed. As shown in our article, specific neural network architectures evaluated in
state of the art are usually limited to a single publication without much continuation in later work,
therefore as this point it is hard to assess how such implementations would perform in different
application domains and data scenarios.
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