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Procurement? Problems? Analytics?

PROCUREMENT CHALLENGES ANALYTICS

 Acquisition of variety : Of!gti_mise c]?sts k;]y improving * Inspect the data (orders,
: elriciency or purcnase
of goods or services e IOerSOhﬂetll data, external
from an outside aggregating purchases) organisations)
external sources _
 Improve on supplier service e Detect purchasing
to obtain better quality goods/ trends and opportunities
* Form: orders, services. to improve efficiency of
transactions, tenders, : procurement process
:  Detect employees 0
quotations organisation who try to exploit _ |
the system to their own benefit  Find anomalies and
S D cetes walles transactions that stand
P : ’  Detect suppliers which try to out from the rest
quantities, requesters, benefit at the cost of the
vendors ... organisation

* Highlight suspicious
activity

Institute for Infocomm Research (I2R)



Procurement Systems in Practice

[Introduction: what has been done so far?]

® Procurement Management and Information Gathering

® procurement management systems | put/approve orders, manage suppliers
SAP, Oracle, dedicated platforms

® Data Analytics

® procurement management systems + common ofﬁce tOOlS
MS Excel etc.

® Business Intelligence tools

Tableau, Qlikview

® Fraud Detection

® commercial fraud detection frameworks
SAS Fraud Framework, Oracle Advanced Analytics

® fraud detection research

Credit card fraud, insurance fraud, telecommunication fraud



Procurement System Problems

[Introduction: Common Problems of Procurement Support Systems]

® |[nformation overflow | lots of data gathered over long time
® Noisy data | manual input, many different users, sometimes different systems

® No all information is recorded | e.g. little or no record of past fraud

(frauds are rare but when happen cost a lot)



Context
[Approach: A*STAR Procurement Analytics System]
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number of applied research projects.



Proposed Solution

[Approach: Future purchase prediction]

Research Problem: predict future procurement orders

Applications: optimise purchase aggregation, fraud detection

APPROACH

Approach: apply Markov Chains to model reoccurring

purchase sequences in time and:

* predict single next item purchase
* predict multiple future item purchases



Markov Chains

[Approach: Use of Markov Chains for time series modelling]

Markov chains | many applications: physics, chemistry, finance...
Hilgers 2006

Markov Chains for Data Analytics | purchase prediction, web traffic analysis
Bozzetto 2005; Deshpande 2004; Bertsimas 2003

Markov Chains in Fraud Detection | credit card fraud, anomaly detection
Khan 2003




Procurement Data Model

[Approach: dataset description]

PURCHASE ORDER who ? when ? from who ? what ?

REQUESTING

PURCHASE ORDER
OFFICER CREATION DATE VENDOR NAME

APPROVING OFFICER APPROVALDATE | ....

PO NUMBER

VALUE

PURCHASE ORDER ITEM

ITEM NUMBER UNIT PRICE QUANTITY

ITEM DESCRIPTION -

Two main concepts:

- pu rchase order | record of single purchase placed by a employee on a given date

- purchase order item | detailed list of items/services within a purchase
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Dataset statistics

[Approach: dataset description]

# Purchase Order 141 286

# Purchase Order ltem 316,036

# Vendor 7,887
# Requester 11,312
# Approval Officer 594

# [tem 212,652

MIN/AVG/MAX #Order PER

1/12.7/ 1002

Requester
MIN/AVG/MAX #Vendor PER 1/5.8/ 163

Requester
MIN/AVG/MAX #ltem PER 1/11.7/ 807

Requester

MIN/AVG/MAX Creation Date

Difference PER Requester O 2ok 4o
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[Approach: dataset preparation and cleaning]
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reason

» manually typed item descriptions
outcome

» little repeating patterns

solution  use clustering to group
> o o
similar purchases




F-measure

Clustering parameters

[Approach: dataset preparation and cleaning]
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Best result —»

Hierarchical Clustering

< * Similarity measure:

S N g-gram distance

* Similarity threshold:
g number of non-matching
2-gram + lower_case q—grams

——2-gram + 20string cap

2-gram + 20string cap + lower_case ) Optional Crite ria:
* exclude short strings

—2-gram

e Evaluation setup:
* 2000 manually
annotated order items
* 44 requesting officers
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Prediction Algorithm Experiments

[Approach: purchase prediction]

Experiment setting:
® prediction of item description individually per requester

® given last purchase predict:

® single next purchase

® multiple next purchases

Algorithms:

Random Sampling | pick on random from requester past items
Probability Distribution | Cumulative Distribution Function (CDF)
Simple Sequential Sampling | only multiple purchases experiment

Markov Chain | first order Markov chain experiments



Experiments Results
[Approach: purchase prediction #2]

Setup Ignored AVG Precision/Recall for Requester

Requesters (Requester Count / % of Dataset orders / precision / recall)

(% of all

requesters) Precision >= () Precision > 0 Precision > 0.5
0.5 train+ Markov+ 20 order 98.16% 212/15.04%/0.34/0.09 96/5.70%/0.74/0.19 67/1.61%/0.97/0.26
set
0.5 train+ CDF+ 20 order set 35.58% 6438/ 97.50% /0.04/0.03 1319/49.41%/0.20/0.17 120/ 0.88% /0.95 / 0.80
0.5 train+ Random Sampling+ 35.58% 6438 /97.50% /0.04 /0.03 1258 /46.28% /0.19/0.17 110/0.58% /0.94 /0.84
20 order set
0.5 train+ Sequence 35.58% 6438 /97.50% /0.04 / 0.04 1367 /40.10% / 0.17 / 0.19 98 /0.54%/0.93 /091
Prediction+ 20 order set
0.5 train+ Markov+ 20 order 72.06% 2356/ 78.16% /0.32/0.08 1235/52.47% /0.61 /0.15 600 /12.88% /0.96 /0.24
set+ clustering
0.5 train+ CDF~+ 20 order set 37.39% 6214 /97.05%/0.15/0.13 3134/83.76% /0.29/0.25 382/2.59%/0.91/0.75
+ clustering
0.5 train+ Random Sampling+ 37.39% 6214 /97.05% /0.00 /0.00 14 /1.05% /0.01/0.02 0/0.00%/0.00/0.00
20 order set = clustering
0.5 train+ Sequence 37.39% 6214 /97.05% /0.00/0.00 6/031%/0.02/0.03 0/0.00% /0.00/0.00

Prediction+ 20 order set +
clustering

!

I

!

_ho clustering

clustering

different requirement thresholds related to precision per requester

Best result —» Markov + multiple purchase prediction (20 orders) + clustering
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FUTURE WORK

Conclusions

[Conclusions and Future work]

only possible in organization with large procurement
database

single order prediction and use of raw data for
predictions gave quite bad results

only multiple order prediction in longer time frame (|
year) gave satisfactory results

prediction of vendors which repeat a lot more often
item descriptions across purchases

practical evaluation of prediction results (aggregation
capabilities and cost saving implications)

experiments with different datasets



Thanks for attention!

Questions?
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