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background A*STAR Procurement Oftice - the client (1)

A*STAR A*STAR Procurement Office
* Large governmental agency in * Oversight of procurement of all
Singapore (>5k employees) Research Institutes
* Dealing with research in * Optimise purchasing processes

multiple areas, divided into

Research [nstitutes * Detect lapses, inconsistencies,

potential fraud
* 10k-magnitude volume of

purchases monthly / 100k
yearly



A*PO - I2R collaboration on Procurement Analytics
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background A*STAR Procurement Office - the client (2)

* Technologies

* Deployed systems

* Patents

* Research publications
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background demand aggregation - the problem

How DOES DEMAND AGGREGATION WORK IN AN ORGANIZATION?

| A
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UNDERSTAND THE PROCESS

e Collate and combine
requirements of multiple buys

e Contract suppliers based on
combined demand

® Standardise and establish
best-buy strategy

KNOW THE PROBLEM

® Fractured purchasing
process done individually by
departments and units results
in similar buys for different
prices from multiple suppliers

® Big amount of data makes it
difficult to understand best
options for cost savings

® Complex network of
suppliers, items they provide,
prices and demand over time
makes it difficult to solve this
multi-variate problem with
standard approaches



solution bi-clique clustering
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e frame demand aggregation problem ; : . :
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Sample procurement bipartite graph
(blue coloured edges denote 3x4 bi-clique)



solution BSC algorithm
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* Finding maximum edge bi-clique is an NP-complete
problem
* Multiple publications with different algorithmic 12,000
approaches
* iMBEA [Zhang et al., 2014]
* LCM-MBC [Li et al., 2007]
* On small dataset not a big issue but for our £ o Fxample %,
medium” sized data -> infeasible phm s e | omwe
. . 15 """ .
* Our approach: Monte Carlo algorithm (polynomial): vendors | [ "% - T =
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Optimality proof —  Shaham et al. 2016



solution SBCPalgorithm

* (1) Practical BSC algorithm modifications

* Different bi-clique expansion strategy to give
more “interesting” maximal bi-cliques (ie. more
even amount of vendors vs items)

* (2) Post-processing filters

* Value constraints - check purchasing patterns
with significant value only

* Volume constraints - remove patterns with few
purchase orders

* Purchasing trend constraints - look for purchases
that have potential to keep demand over years
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evaluation setup

 Running SBCP algorithm over the A*PO procurement database

* Input: Using 3 most recent years (2014 - 2010); 271,219 items X 7319 vendors
[1,032,275 POs]

* Output: Demand Aggregation patterns along with associated Purchase Orders
* A*PO officers to assess quality of detected aggregation patterns:

* In comparison to past bulk tenders

* Assessment for creating new bulk tenders

e 3 rounds of evaluation (earlier mentioned SBCP improvements in between)



evaluation results

* Overall quality of DA patterns
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deployment

* Integration with A*PO workflow

* SBCP executed periodically as decision-
support system for annual reports to
management

* Suggest new tenders

* Update old tenders with new items/vendor

* Input/output
* Taking a dump of procurement database

* Analytics dashboard over the DA pattern list
output

setup in production
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conclusions lessonslearned

* Complete list of maximal bi-cliques not necessary (and unwanted)
* Too many aggregation patterns counterproductive for end users
* Mine and prioritise “useful” patterns (as per business requirements)
* Data Science metrics vs. Business metics
* People who don’t deal with computer science rarely understand what is “precision” / “recall”

* Listen to end user what they want and assess quality from their perspective (and stick to established
metrics behind the scenes only)

* “Interesting” , “non-obvious” patterns vs. “good quality”
* Clients often doesn’t know what they want (multiple times during the project)
* Redefining meaning of valid demand aggregation patterns
* Be prepared to adjust the algorithm many times
* Early engagement with client helps

* Long way from reaching (1) metric goals to (2) deployment to (3) active use by client



future work

e Algorithm improvements

* Finding Quasi bi-cliques (ie. not every vendor selling every item, allow some
freedom)

* Assessment of DA (maximal bi-clique) quality
* Going outside A*STAR and commercialising the technology

* Method and Apparatus for Procurement Demand Aggregation. Patent [Shaham et
al. 2010]

 Startup to bring our DA technology to the market - Semantist @

Semantist



