Using Unsupervised Learning for Data-Driven Procurement Demand Aggregation

Eran Shaham, Adam Westerski, Rajaraman Kanagasabai, Amudha Narayanan, Samuel Ong, Jiayu Wong, Manjeet Singh
what is procurement?

- **Acquisition** of variety of goods or services from an outside external sources

- **Form**: orders, transactions, tenders, quotations

- **Data**: dates, values, quantities, requesters, vendors …
background A*STAR Procurement Office - the client (1)

A*STAR

• Large governmental agency in Singapore (>5k employees)
• Dealing with research in multiple areas, divided into Research Institutes
• 10k-magnitude volume of purchases monthly / 100k yearly

A*STAR Procurement Office

• Oversight of procurement of all Research Institutes
• Optimise purchasing processes
• Detect lapses, inconsistencies, potential fraud
background A*STAR Procurement Office - the client (2)

A*PO - I2R collaboration on Procurement Analytics | 2014 - onwards

COMPASS

- Technologies
- Deployed systems
- Patents
- Research publications

Procurement Fraud Detection

Procurement Demand Forecasting

Procurement Demand Aggregation

Westerski et al. 2017

Westerski et al. 2015

THIS TALK
background
Demand aggregation - the problem

How does Demand Aggregation work in an organization?

- **Multiple vendors delivering goods for an organization**
- **Same products delivered at different prices**
- **Multiple different items but belonging to similar goods category (e.g., cleaning articles)**

Understand the process
- Collate and combine requirements of multiple buys
- Contract suppliers based on combined demand
- Standardise and establish best-buy strategy

Know the problem
- Fractured purchasing process done individually by departments and units results in similar buys for different prices from multiple suppliers
- Big amount of data makes it difficult to understand best options for cost savings
- Complex network of suppliers, items they provide, prices and demand over time makes it difficult to solve this multi-variate problem with standard approaches
solution bi-clique clustering

- frame demand aggregation problem as bi-clique clustering problem
 - Map purchase orders into a bipartite graph - items vs. vendors
 - Bi-clique - every vendor connected to every item
 - Find max bi-cliques = biggest potential Demand Aggregation (DA) patterns

Sample procurement bipartite graph
(blue coloured edges denote 3x4 bi-clique)
solution BSC algorithm

• Practical problem
 • Finding maximum edge bi-clique is an NP-complete problem
 • Multiple publications with different algorithmic approaches
 • iMBEA [Zhang et al., 2014]
 • LCM-MBC [Li et al., 2007]
 • On small dataset not a big issue but for our “medium” sized data -> infeasible
 • Our approach: Monte Carlo algorithm (polynomial): doesn’t give full list but optimal solution is good enough

Optimality proof → Shaham et al. 2016
solution SBCP algorithm

Subspace Bi-clique Clustering for Procurement (SBCP) - procurement domain specific adjustments

(1) Practical BSC algorithm modifications
- Different bi-clique expansion strategy to give more “interesting” maximal bi-cliques (ie. more even amount of vendors vs items)

(2) Post-processing filters
- Value constraints - check purchasing patterns with significant value only
- Volume constraints - remove patterns with few purchase orders
- Purchasing trend constraints - look for purchases that have potential to keep demand over years
evaluation setup

• Running SBCP algorithm over the A*PO procurement database
 • **Input:** Using 3 most recent years (2014 - 2016); 271,219 items x 7319 vendors [1,032,275 POs]
 • **Output:** Demand Aggregation patterns along with associated Purchase Orders
• **A*PO officers to assess quality of detected aggregation patterns:**
 • In comparison to past bulk tenders
 • Assessment for creating new bulk tenders
• **3 rounds of evaluation** (earlier mentioned SBCP improvements in between)
evaluation results

- Overall quality of DA patterns

professional assessment = \frac{\text{new valid DAs}}{\text{all new mined DAs}}

\text{matching existing DAs} = \frac{\text{detected past DAs}}{\text{total past DAs}}

- Assessment of POs inside patterns

precision = \frac{\text{valid POs}}{\text{all mined POs}}

recall = \frac{\text{valid POs}}{\text{relevant POs}}
• Integration with A*PO workflow
 • SBCP executed periodically as decision-support system for annual reports to management
 • Suggest new tenders
 • Update old tenders with new items/vendor

• Input/output
 • Taking a dump of procurement database
 • Analytics dashboard over the DA pattern list output
conclusions lessons learned

• Complete list of maximal bi-cliques not necessary (and unwanted)
 • Too many aggregation patterns counterproductive for end users
 • Mine and prioritise “useful” patterns (as per business requirements)

• Data Science metrics vs. Business metrics
 • People who don't deal with computer science rarely understand what is “precision” / “recall”
 • Listen to end user what they want and assess quality from their perspective (and stick to established metrics behind the scenes only)
 • “Interesting”, “non-obvious” patterns vs. “good quality”

• Clients often doesn’t know what they want (multiple times during the project)
 • Redefining meaning of valid demand aggregation patterns
 • Be prepared to adjust the algorithm many times
 • Early engagement with client helps
 • Long way from reaching (1) metric goals to (2) deployment to (3) active use by client
future work

• Algorithm improvements
 • Finding Quasi bi-cliques (ie. not every vendor selling every item, allow some freedom)
 • Assessment of DA (maximal bi-clique) quality

• Going outside A*STAR and commercialising the technology
 • Method and Apparatus for Procurement Demand Aggregation. Patent [Shaham et al. 2019]
 • Startup to bring our DA technology to the market - Semantist