

Using Unsupervised Learning for
Data-Driven Procurement Demand Aggregation

Eran Shaham, 1 Adam Westerski, 2 Rajaraman Kanagasabai, 3 Amudha Narayanan, 4
Samuel Ong, 5 Jiayu Wong, 6 Manjeet Singh 7

Institute for Infocomm Research, A*STAR, Singapore,1,2,3,4 ComfortDelGro, Singapore,5
A*STAR Procurement Office, A*STAR, Singapore,6,7

eran-shaham@i2r.a-star.edu.sg, adam-westerski@i2r.a-star.edu.sg, kanagasa@i2r.a-star.edu.sg, naraa@i2r.a-star.edu.sg,
samuelong@comfortdelgro.com, wong_jiayu@hq.a-star.edu.sg, manjeet_singh@hq.a-star.edu.sg

Abstract
Procurement is an essential operation of every organization
regardless of its size or domain. As such, aggregating the de-
mands could lead to better value-for-money due to: (1) lower
bulk prices; (2) larger vendor tendering; (3) lower shipping
and handling fees; and (4) reduced legal and administration
overheads. This paper describes our experience in developing
an AI solution for demand aggregation and deploying it in
A*STAR, a large governmental research organization in Sin-
gapore with procurement expenditure to the scale of hundreds
of millions of dollars annually. We formulate the demand ag-
gregation problem using a bipartite graph model depicting the
relationship between procured items and target vendors, and
show that identifying maximal edge bicliques within that
graph would reveal potential demand aggregation patterns.
We propose an unsupervised learning methodology for effi-
ciently mining such bicliques using a novel Monte Carlo sub-
space clustering approach. Based on this, a proof-of-concept
prototype was developed and tested with the end users during
2017, and later trialed and iteratively refined, before being
rolled out in 2019. The final performance was 71% of past
cases transformed into bulk tenders correctly detected by the
engine; for new opportunities pointed out by the engine 81%
were deemed useful for potential bulk tender contracts in the
future. Additionally, per each valid pattern identified, the en-
gine achieved 100% precision (all aggregated purchase or-
ders were correct), and 79% recall (the engine correctly iden-
tified 79% of orders that should have been put into the bulk
tenders). Overall, the cost savings from the true positive con-
tracts spotted so far are estimated to be S$7 million annually.

 Introduction
Procurement is an essential operation of every organization
regardless of its size, business domain, and sector (i.e., pri-
vate or public). A typical procurement budget can be a sig-
nificant portion of total expenditure, up to 60% of revenues

Copyright © 2021, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(Bartolini 2011). Knowing its magnitude, companies in-
creasingly invest in optimizing procurement operations by
reorganizing their practices to root out any inefficiencies or
problems. This paper describes our experience in develop-
ing an AI solution for demand aggregation and deploying it
in A*STAR, a large governmental research organization in
Singapore with procurement expenditure in the scale of hun-
dreds of millions of dollars annually. We were presented
with a set of digitalized procurement data and had to work
with certain constraints, such as noisy, incomplete and un-
labeled data scattered across multiple legacy data manage-
ment systems. This is in contrast to academic literature
which discusses different aspects of procurement manage-
ment based on theoretical frameworks and strong assump-
tions on data scale, labeling and consistency.
 Large enterprises like A*STAR spend millions on pur-
chases of goods and services. Demand aggregation is the
process of aggregating the demands for better value-for-
money due to: (1) lower bulk prices; (2) larger vendor ten-
dering; (3) lower shipping and handling fees; and (4) re-
duced legal and administration overheads.
 Our key insight is in formulating the demand aggregation
problem using a bipartite graph model which depicts the re-
lationship between procured items and target vendors. The
need for an AI solution is mainly due to the dataset size.
While small datasets could settle for eyeballing, datasets of
moderate size are already hard to handle. In addition, em-
ploying simple techniques (e.g., clustering) will not be ade-
quate due to the “curse of dimensionality” (Bellman 1961;
Beyer et al. 1999; Kriegel, Kröger, and Zimek 2009). Thus,
for a solution to be successfully deployed on an unlabeled
large dataset, and to successfully scale (the dataset might in-
crease in size over time), unsupervised learning techniques

are required. We show that identifying maximal edge bi-
cliques within a bipartite graph would reveal potential de-
mand aggregation patterns. We propose an unsupervised
learning methodology for efficiently mining such bicliques
using a novel Monte Carlo subspace clustering approach.

We begin by describing the organizational context and the
problem description.

Problem Description
A*STAR is a large governmental research organization in
Singapore comprising over 17 research entities and 5000
staff. Procurement spending of the organization can run into
hundreds of millions of dollars annually. Given their scale,
the procurement operations are handled in a decentralized
manner by individual entities through an online workflow
comprising several steps (see Figure 1), and are governed
and audited by a centralized unit called the A*STAR Pro-
curement Office (A*PO) through a predominantly manual
process.
 A*PO approached us in 2014 to create a data-driven
framework towards transforming the manual process of de-
tecting potential lapses, enhancing procurement compli-
ance, and optimizing procurement spend. We embarked on
the A*STAR Procurement Analytics initiative to develop an
AI platform for tackling three major challenges: (1) procure-
ment fraud detection; (2) procurement demand forecasting;
and (3) procurement demand aggregation. Our research on
the former two problems is reported elsewhere (Westerski
et.al. 2015; Westerski, Kangasabai, and Sim 2017).
 This paper focuses on the procurement demand aggrega-
tion problem and reports on our experience in developing an
AI solution for tackling the problem and deploying it
A*STAR-wide. Broadly, this was done in two phases: (1) a
proof-of-concept phase in 2017, where the core method was
developed by back testing on historical data; and (2) a pilot
trial and iterative refinement until final roll-out in 2019. A
high-level description of the algorithm developed during the
proof-of-concept phase has been filed as a patent (Shaham,
Westerski, and Kangasabai 2019). In this paper, we provide
a complete account of both the phases as part of sharing our
experiences.
 Demand aggregation is the process of aggregating the de-
mands for goods and services to achieve better value-for-
money in terms of: (1) lower bulk prices; (2) larger vendor
tendering; (3) lower shipping and handling fees; and (4) re-
duced legal and administration overheads. Large enterprises
such as A*STAR spend millions of dollars on purchases of
goods and services. Thus, even a small change in these four
fields could lead to substantial savings.

To fully appreciate the application, we first describe the pro-
curement data structure.

Data Structure
The presented application was developed based on procure-
ment transactional data produced over the course of 8 years
(from 2009 to 2016, inclusive). The dataset was refreshed in
subsequent stages of the project to include consecutive
years. However, to present a consistent and focused evalua-
tion scenario, including comparison of accuracy between
different project stages, the experiments reported here relate
to the initial 8 years only.
 Within this dataset, the key elements that comprise a pur-
chase are related to procedural stages of the procurement
process as presented in Figure 1: (a) Invitation to Tender
(ITT) or Invitation to Quotation (ITQ); (b) bid placement
and approval of selected supplier; and (c) issuance of Pur-
chase Order (PO). The data for typical final stages of pro-
curement process related to delivery of goods and invoicing
are generally treated as post-procurement process and are
therefore not included in the discussion in this article. Also,
as demand aggregation applies only to orders that were suc-
cessfully placed, we will focus on the PO data.
 Each PO would point to an employee of the organization
fulfilling the role of buyer (requesting officer) and a hierar-
chy of approving officers (in charge of approving the pur-
chase request). It would also have a creation date (day on
which requesting officer submitted the information to the
system) and an approval date. A PO would further consist
of purchase order items, each of which can relate to a dif-
ferent item or service and contain further details, such as:
textual item description, quantity of items bought and unit
price per single item. Similar structure of purchases split
into items with details of pricing, quantities, descriptions

Figure 1. Procurement workflow and steps.

etc. would also be present during earlier stages of (a) and
(b). It is worth noting that values at all stages can differ –
starting from expected purchases, to what suppliers offer, to
what was finally negotiated and approved.
 Throughout the experiments, we learned that the key fea-
tures that most influenced the capabilities of our algorithm
were the following five aspects of the procurement data:
who (requester); what (item description); what type (mate-
rial group); from who (vendor); and when (creation/ap-
proval date).
 In total, the dataset comprised 1,032,275 POs with
660,162 distinct items, and 14,834 unique vendors. On av-
erage, a single PO had 2.2 items attached. However, 59% of
the POs had only 1 order item attached, and 97% had 10 or
less. Within the remaining 3%, the maximal recorded
amount of order items per PO was 164. This reflects the
overall behavior of the organization employees and the pol-
icies in place, which focused on simple orders typically re-
lated to one type of good.

Application Description
Aggregating and analyzing the demand using the PO dataset
is not straightforward, due to the following challenges:
• Item description was a key field, but it was free text with

no standard terminology. Also, it was of short length
(<128 characters) and got truncated if it exceeded.

• Vendor name was another key field, which had standard
names for vendors located in Singapore (the names fol-
lowed the official ACRA-registered ones), but not for
those located overseas.

• The only labeled data that we could possibly use were the
53 bulk contracts currently in operation. However, the
contract descriptions had only a general description of the
items covered, and the vendor names had poor matches
with those in the dataset.

• The scale of the data, although not huge, was large
enough to make many state-of-the-art unsupervised learn-
ing algorithms (as we later required) infeasible.

 A naïve aggregation strategy could be implemented via
clustering of PO items (and then by vendors) by suitably de-
fining a text similarity measure (Chew 2017; Chowdhary et
al. 2011; Wang and Miller 2005). However, such a one-di-
mensional clustering approach has two issues:
1. It is not adequate for large-scale datasets due to the “curse

of dimensionality” (Bellman 1961; Beyer et al. 1999;
Kriegel, Kröger, and Zimek 2009). Furthermore, demand
aggregation requires an algorithm which can simultane-
ously group subsets of items which relate to subsets of
vendors (see Figure 2).

2. On smaller or medium-sized data, its accuracy will be af-
fected by the variability in text descriptions and effec-
tively the similarity measure is fine tuned to tolerate it.

 The relationship between items and vendors could be nat-
urally modeled by a bipartite graph (see example in Figure
3). Such graphs have been proven useful in modeling a wide
range of relationship networks (Kunegis 2013; Shaham, Yu,
and Li 2016). A simultaneous grouping of items and vendors
within a bipartite graph is called a biclique (see examples in
Figure 4). Note that a biclique does not require all the items
(or vendors) to be lexically similar.
 Biclique detection is a well-known problem in graph the-
ory and data mining, with numerous real-world applications
across different domains (Ben-Dor et al. 2003; Cheng and
Church 2000; Dawande et al. 2001; Ganter and Wille 1999;
Kunegis 2013; Melkman and Shaham 2004; Mishra, Ron,
and Swaminathan 2003; Mushlin et al. 2007; Nussbaum et
al. 2010; Sanderson et al. 2003; Swaminathan and Tayur
1998; Zhang et al. 2014). Given a bipartite graph and its cor-

Figure 2. Simplified example of a procurement database
containing hidden demand aggregation patterns (patterns

can overlap).

Figure 3. Procurement bipartite graph comprising 14 items,
10 vendors, and the relationship between item 7 and ven-

dor 4 (item 7 was purchased from vendor 4).

responding partition into two disjoint sets of vertices, a bi-
clique is a complete bipartite subgraph such that every ver-
tex of the first partition is connected to every vertex of the
second partition (see example in Figure 5, where a vertex set
{i3, i4, i6} and a vertex set {j3, j5} form a biclique). Mathe-
matically, the notion of biclique is defined as follows.

Definition 1. Let G = (U ∪ V, E) be a bipartite graph, where
U and V are two disjoint sets of vertices, and E is an edge
set such that ∀(i,j) ∈ E, i ∈ U, j ∈ V. A biclique within G is
a couple (set pair) (I, J) such that I ⊆ U, J ⊆ V and ∀i ∈ I, j
∈ J, (i, j) ∈ E.

 The computational complexity of finding the maximum
biclique depends on the exact objective function used. In
contrast to the well-known maximum clique problem
(Makino and Uno 2004; Tomita, Tanaka, and Takahashi
2006), the maximum biclique problem has three distinct var-
iants, with the following objective function µ(I, J):
1. µ(I, J) = |I| × |J| — known as the MAXIMUM EDGE BI-

CLIQUE problem. The problem was proved to be NP-
complete (Lonardi, Szpankowski, and Yang 2006;
Peeters 2003), and challenging to approximate (Ambühl,
Mastrolilli, and Svensson 2011; Feige 2002; Feige and
Kogan 2004; Goerdt and Lanka 2004; Peeters 2003).

2. µ(I, J) = |I| , where |I| = |J| — known as the BALANCED
COMPLETE BIPARTITE SUBGRAPH problem (also
known as the balanced biclique problem). The problem

was proved to be NP-complete (Garey and Johnson
1979).

3. µ(I, J) = |I| + |J| — known as the MAXIMUM VERTEX
BICLIQUE problem. The problem can be solved in poly-
nomial time using a minimum cut algorithm (Hochbaum
1998; Garey and Johnson 1979).

 To achieve better value-for-money, demand aggregation
aims to encapsulate the largest possible number of purchas-
ing orders, and to “replace” them with one order. i.e., replace
|I|×|J| individual purchasing orders (|I| items bought from |J|
vendors) with one purchasing order (which includes the |I|
items from e.g., the cheapest vendor). As such, we focus on
the problem of finding the set of maximal edge bicliques
(potentially overlapping). Each such maximal edge biclique
will serve as a potential demand aggregation. We propose
an efficient Subspace Biclique Clustering for Procurement
(SBCP) algorithm to tackle this challenging problem. Ex-
tensive experimentations on artificial and real-world pro-
curement datasets demonstrate the superiority of our pro-
posed SBCP algorithm over state-of-the-art techniques.

Use of AI Technology
We are now ready to present the SBCP algorithm. Firstly,
we describe a Monte Carlo algorithm for extracting a list of
maximal bicliques. Next, we prove that the list contains op-
timal bicliques. Finally, we present the run-time analysis of
the algorithm.

Finding Maximal Bicliques
For ease of readability, we adopt the graph’s adjacency ma-
trix representation, defined as follows (see the example in
Figure 5b, which is the adjacency matrix representation of
the bipartite graph G in Figure 5a).

Definition 2. Let G = (U ∪ V, E) be a bipartite graph such
that |U| = m, and |V| = n. The adjacency matrix X of graph
G is a [m × n] matrix such that Xi,j = 1 if (i,j) ∈ E and Xi,j =
0 otherwise.

Figure 5. (a) Bipartite graph G; and (b) its corresponding
adjacency matrix, comprising the maximum edge biclique

({i3, i4, i6}, {j3, j5}) of size 6 edges and 5 vertices.

Figure 4. Example of (a) procurement bipartite graph comprising: (b) biclique of 6 items x 2 vendors ({i2, i3, i4, i5, i6, i7} ×
{v2, v3}); (c) biclique of 3 items x 4 vendors ({i2, i3, i4} × {v2, v3, v4, v5}); and (d) biclique of 2 items x 3 vendors ({i2, i13} ×

{v3, v6, v7}).

 The input of the SBCP algorithm is therefore an adja-
cency matrix X of a given bipartite graph G, consisting of
only boolean numbers, namely 0 and 1. The output of the
SBCP algorithm is a list of maximal bicliques, i.e., a list of
submatrices of ones, representing maximal bicliques within
G (the graph may contain multiple, possibly overlapping,
maximal bicliques). The SBCP algorithm itself uses a sub-
space clustering approach (Lonardi, Szpankowski, and
Yang 2006; Procopiuc et al. 2002; Shaham, Yu, and Li
2016). This common technique uses iterative random pro-
jection (i.e., a Monte Carlo strategy) to obtain the biclique’s
seed, which is later expanded into a maximal biclique.

The SBCP Algorithm
Algorithm 1 presents the SBCP algorithm. As in the case of
many Monte Carlo algorithms, the structure of the SBCP al-
gorithm is very simple, and can be divided into the follow-
ing stages:
(i) Seeding (lines 2–4): a random selection of a set of rows
to serve as a seed of the maximal biclique.
(ii) Addition of rows and columns (lines 5–20): interleaved
accumulation of rows (lines 9–14) and columns (lines 15–
20), which comply with the rows and columns already accu-
mulated.
(iii) Polynomial repetition (line 1): repetition of the above
two steps provides a probabilistic guarantee of acquiring a
set of maximal bicliques.

Remark 1. The Monte Carlo nature of the SBCP algorithm
is revealed in phase (i) where random seeds are generated.
The subspace clustering nature of the SBCP algorithm is re-
vealed in phases (ii), where the seed of phase (i) is expanded
to form a maximal subset of rows over a maximal subset of
columns, i.e., a maximal biclique.

Remark 2. To ease readability, lines 10 and 16 use the short
notations of: Xi,J = 1 and XI,j = 1, respectively, which have
the meaning of: ∀j ∈ J, Xi,j = 1 and ∀i ∈ I, Xi,j = 1, respec-
tively.

Remark 3. The SBCP algorithm has an inherent ability to
mine multiple, possibly overlapping, bicliques by utilizing
the independent random projection on each repetitive run, to
reveal columns and rows relevant only to a specific biclique.

Remark 4. The SBCP algorithm is not designed for the enu-
meration of all maximal bicliques, which may be exponen-
tial in size (Eppstein 1994; Zhang et al. 2014). The algo-
rithm has a polynomial number of iterations, and thus, the
size of the return list is also polynomial. However, we next
prove that the returned list contains, with a fixed probability,
optimal bicliques.

Algorithm 1: SBCP algorithm for extracting a list of
maximal bicliques.

Input: X, a [m × n] matrix of boolean numbers.
Output: List of maximal bicliques.
Initialization: Setting of N, |P| and |S| is discussed in
the following section.

1: loop N times
2: // Seeding phase
3: choose a subset of rows P uniformly at random;
4: set I ← P, J ← ∅;
5: // Interleaving row and column addition phase
6: set isAddRow ← False;
7: set row i ← 1, column j ← 1;
8: while row i ≤ m or column j ≤ n do
9: if isAddRow then // row addition
10: if Xi,J = 1 then
11: add i to I;
12: i ← i + 1;
13: if j ≤ n then
14: isAddRow ← !isAddRow
15: else // column addition
16: if XI,j = 1 then
17: add j to J;
18: j ← j + 1;
19: if i ≤ m ⋀ (|J| ≥ |S| ⋁ j > n) then
20: isAddRow ← !isAddRow
21: return list of (I, J);

Optimality of the Algorithm
Clearly, the proposed SBCP algorithm can be viewed as a
heuristic method. Next, we prove that there are solid theo-
retical reasons for this efficacy.
 The SBCP algorithm derives inspiration from the BSC al-
gorithm (Shaham, Yu, and Li 2016). The motivation to en-
hance the BSC algorithm is to avoid its tendency to be stuck
in local maxima, which results in mining degenerated bi-
cliques, i.e., bicliques that have large number rows but small
number of columns (or the other way around, i.e., small
number of rows and large number of columns). Such degen-
erated bicliques are less applicable, particularly in an indus-
trial scenario usage such as demand aggregation. Next, we
outline the intuition behind the SBCP algorithm. For de-
tailed argumentations, proofs, run-time analysis, and com-
parisons to existing algorithms, we refer the reader to Sha-
ham, Yu, and Li (2016).
 The intuition behind the BSC algorithm is that once we
successfully draw a discriminating column set (subset of the
rows), we can use it to collect the biclique’s columns, and
only then, use the collected columns in order to collect the

biclique’s rows. The mechanism behind the SBCP algorithm
is similar. Unlike the BSC algorithm which collects all of
the biclique’s columns and only then collects all of the bi-
clique’s rows, the SBCP algorithm collects the biclique’s
rows and columns in an alternating fashion. The intuition is
that an alternating expansion of the initial discriminating set
would result in an ever-growing discriminating set. This
promises better discriminating results (see Theorem 3.1 and
Experiment I (Shaham, Yu, and Li 2016)), which in turn
leads to a better detection probability (see Theorem 3.2
(Shaham, Yu, and Li 2016)), which results in an overall re-
duced run-time (see Subsection 3.3 (Shaham, Yu, and Li
2016)).

Run-time
The run-time is polynomial: mnO(1) (see Subsection 3.3
(Shaham, Yu, and Li 2016)).

Application Use and Payoff
The implementation of the SBCP algorithm to create a prac-
tical procurement solution for A*PO was an iterative pro-
cess. Prior to achieving its final version, the solution under-
went three major rounds of evaluation. Each evaluation ran
the refined algorithm over a dataset of Purchasing Orders
(POs), passing the mined Demand Aggregation (DA) pat-
terns, with their related POs, to a procurement officer for
evaluation. The quality of the algorithm was assessed using
the following metrics: (1) precision; (2) recall; (3) profes-
sional assessment of usefulness for newly detected and un-
known DA patterns according to A*PO expertise; and (4)
number of patterns matching with existing DAs, i.e., 33 pre-
viously known DAs curated by A*PO legacy methods. For-
mally, those are defined are follows:

1.		+,-./0/12 = 	 456/7	+80
566	9/2-7	+80

2.		;-.566 = 	 456/7	+80
,-6-452<	+80	

3.		+,1>-00/1256	500-009-2< = 	 2-?	456/7	@A0
566	2-?	9/2-7	@A0	

4.		C5<.ℎ/2E	?/<ℎ	-F/0</2E	@A0 = 	7-<-.<-7	G50<	@A0<1<56	G50<	@A0

 The above metrics were picked in order to reflect the rel-
evant aspects of A*PO operations. Metrics (1) and (2) were
calculated with respect to POs within each detected pattern,
i.e., determining the quality of each pattern regardless to
how many patterns were detected in total. Furthermore, the
procurement officer would treat POs listed by the algorithm
as a starting point, and further investigate using traditional
A*PO techniques whether other orders should have been in-
cluded. Metrics (3) and (4) focus on the assessment of the

mined DAs from a past and future business perspective. The
evaluation of precision, recall and professional assessment
employed an additional constraint: each was calculated
based on 30 randomly picked DAs out of all returned by the
algorithm. Such methodology was necessary as the evalua-
tion of each pattern took considerable time and it was im-
possible for A*PO staff to look through all detected patterns
during each evaluation round.
 For the first round of evaluation, we began with running
the SBCP algorithm on the entire A*STAR procurement da-
tabase for the years 2009 to 2016 (inclusive). To recall from
Section 2, the database comprises 660,162 items, 14,834
vendors, and 1,032,275 POs.
 The evaluation by A*PO found various issues (e.g., price
depreciation, coarse/grained clusters). Following A*PO
feedback, we added domain constraints (encapsulating
A*PO best practices) in the next two evaluation rounds:
1. Use of only the most recent 3 years (i.e., years 2014–

2016). This resulted in a database comprising 271,219
items, 7,319 vendors, and 391,671 POs.

2. Filter out patterns with less than 20 POs a year.
3. Filter out patterns with a value less than S$70,000 a year.
4. Filter out patterns with a descending price trend (trend

calculated as linear regression).
5. Allow patterns to fail once on the above filters.

After incorporating these new constraints, the SBCP
miner found 643 patterns. The final performance (see Figure
6) achieved 71% detected legacy DAs (the existing DAs that
were not identified by the engine were A*PO manually
crafted DAs, which violated A*PO-imposed domain con-
straints). The performance for new DAs mined by the engine
was 81% (i.e., 81% of the newly identified DAs were

Figure 6. Evaluation progress.

deemed by A*PO staff as useful cases for potential future
bulk tender contracts, to be thoroughly investigated by
A*PO). Furthermore, all POs assigned to the valid DAs
were correctly mined (100% precision); at the same time,
the valid DAs were determined 79% complete in terms of
listed POs in comparison to what the procurement officer
thought should have been reported (79% recall).
 A*PO calculated the estimation of the incurred savings
resulting from the usage of DAs, as follows. First, from a
chosen DA, a potentially discounted price is calculated as
the cheapest item price among an item subcluster. This is
repeated for all subclusters and subsequently for all DAs. In
the second step, the discounted price is computed by com-
paring with actual prices for items in the last 3 years. The
total savings were estimated to be > S$7 million, after ac-
counting for cost appreciation. Although this is an approxi-
mation, note that additional discounts from buying in bulk
and potential cost savings from reduced legal and admin-
istration overheads were not included. Thus, we believe the
estimate is quite conservative.

Application Implementation and Deployment
In practice, in a production scenario, new demand aggrega-
tion patterns need a rather lengthy time period in order to
surface. Therefore, at deployment stage the algorithm did
not need to run constantly processing the stream of incom-
ing purchase orders in real-time. Instead, A*PO aimed to use
the system as a decision-supporting mechanism for their an-
nual management reports. At bootstrap, our system was used
to reveal past patterns from historical data which were un-
known to A*PO. Moving forward, as new purchases are
made and new data comes in, the system’s purpose is to give
suggestions of new/modified patterns to the procurement of-
ficer; those patterns would subsequently be reviewed man-
ually by the officer and, if useful, recommend to manage-
ment for new contracting/tendering decisions. To that end,
the deployed application had the following characteristics as
described below.

Implementation
The SBCP algorithm was implemented in Java 8, and de-
ployed on a multi-core server running CentOS, using com-
mon libraries such as Apache 2.0 + LGPL, Commons Math,
FastUtil and JavaCSV.

Input/Output
The input was extracted out of A*PO systems as a CSV for-
mat comprising the following attributes: (1) requester name;
(2) item description; (3) material group; (4) vendor name;
and (5) creation/approval date.
 The output was also in the form of a CSV report format,
accompanied by a dashboard analytics tool (see Figure 7).

Deployment Tweaks and Lessons Learned
As part of our partnership, A*PO personnel were deeply in-
volved in all stages of the project. Algorithmic decisions,
such as to model the procurement dataset as a bipartite rela-
tionship graph and to use bicliques to represent demand ag-
gregation patterns, were explained to our collaborators.
Consequently, A*PO procurement officers were able to give
us active feedback on refinements, which iteratively helped
to improve the algorithm’s performance. Although a number
of these tweaks are hard to quantify, they were equally im-
portant for A*PO in terms of the deployment and practical
use of the solution:
1. Adjusting output to preference and analysis capability

and capacity of the end users: during the first evaluation,
we discovered that our end users were overwhelmed by
the amount of potential demand aggregation patterns. The
SBCP algorithm, as other biclique mining algorithms,
strives to deliver a complete set of all possible bicliques.
However, in practical terms, this abundance turns out to
be counterproductive to the end users, as it is too much to
digest. A constant communication of the results to the us-
ers led to incorporating business rules, which helped to
trim and consolidate the demand aggregation patterns list,
and to meet the end users’ needs and capacity.

2. The classic evaluation via precision and recall measure-
ments did not turn out to be particularly relevant from a
business standpoint of A*PO: the end users were not in-
terested in patterns which in their understanding seemed
obvious (i.e., patterns which could be established by a
skilled procurement officer even without data examina-
tion or with little effort via BI tools). This resulted in a
ranking mechanism on top of the SBCP algorithm, which
up-votes “interesting” and “non-obvious” patterns. The
criteria for those were discussed throughout the evalua-
tions and involved incorporating additional data fields

Figure 7. Dashboard analytics view.

(e.g., item categories, requesting officers, approving of-
ficers, historical purchasing trends), in combination with
various thresholds and rules.

3. Redefining requirements for the validity of DA patterns:
previous patterns curated manually by A*PO considered
the aggregation of purchases across different material
groups as valid. However, this turned out to be less valu-
able when using our algorithm, as it resulted in a greatly
increased number of patterns and generated patterns with
weak business logic. Therefore, we enabled the output
system to break down the mined DAs into their material
groups’ components.

Maintenance
Future maintenance was an important criterion during the
application design. With a lean IT team supporting A*PO,
we designed the system with loosely coupled data applica-
tion and UI layers, where the data exchange between the lay-
ers happens via CSV files in pre-defined formats. Thus, the
end users and supporting IT team have full flexibility in up-
dating the data feed into the application in view of future
database upgrades and in maintaining the Tableau UI should
there be new requirements.
 Support for the application layer is currently provided by
our team. Our future plan is to license the technology to a
local company to handle the technical support and mainte-
nance, and also productize it and commercialize further.

Related Work
The MAXIMUM EDGE BICLIQUE problem has received
much attention in academic research in recent years due to
its wide range of applications in areas such as bioinformatics
(Ben-Dor et al. 2003; Cheng and Church 2000; Sanderson
et al. 2003), epidemiology (Mushlin et al. 2007), formal con-
cept analysis (Ganter and Wille 1999), manufacturing prob-
lems (Dawande et al. 2001), molecular biology (Nussbaum
et al. 2010), machine learning (Mishra, Ron, and Swamina-
than 2003), management science (Swaminathan and Tayur
1998), database tiling (Geerts, Goethals, and Mielikäinen
2004), and conjunctive clustering (Mishra, Ron, and
Swaminathan 2003).

Most of the algorithms tackling the problem can be di-
vided into the following three main categories: (i) exploita-
tion of some class of graph; (ii) relaxation of the problem by
bounding a characteristic of a graph; and (iii) reduction to
other domains. Among the algorithms in the first category
we can find: limitation to chordal bipartite graphs (Kloks
and Kratsch 1995), and limitation to convex bipartite graphs
(Alexe et al. 2004; Kloks and Kratsch 1995; Nussbaum et
al. 2010). Among the algorithms in the second category we
can find: bounding the graph’s vertices degree (Alexe et al.
2004; Liu et al. 2006), bounding the graph’s arboricity

(Eppstein 1994), and bounding the biclique’s size (Liu et al.
2006; Sanderson et al. 2003). Among the algorithms in the
last category we can find: reduction to maximal clique
(Makino and Uno 2004; Tomita, Tanaka, and Takahashi
2006), and reduction to frequent itemsets (Li et al. 2007;
Uno, Kiyomi, and Arimura 2004; Zaki and Hsiao 2002).

The reduction of the problem to finding a maximal clique
has the benefit of a well-researched field with an abundance
of heuristics and approximation algorithms (recall that the
problem is NP-complete (Peeters 2003)). However, in order
to perform such reduction, an inflation of the bipartite graph
is needed, which makes the problem computationally im-
practical due to the large number of edges it adds.

The reduction of the problem to frequent itemsets bene-
fits, as above, by relying on a rich field of research. How-
ever, it contains other difficulties. Literature has shown
(Zaki and Ogihara 1998) that a transactional database corre-
sponds to a bipartite graph G = (U ∪ V, E), where U is the
set of items (itemsets), V is the set of transactions (tids), and
E is the set of pairs (item, transaction), i.e., an edge in the
bipartite graph represents a transaction comprising the item.
Take for example a set of products offered by a supermarket.
A transaction would be a subset of products (itemset) pur-
chased by a customer. Therefore, finding frequent itemsets
corresponds to finding bicliques, and finding a maximal fre-
quent closed itemset corresponds to finding a maximal bi-
clique. However, transforming a frequent itemset to a bi-
clique, although requiring a trivial post-processing step, can
be highly time consuming (Li et al. 2007). Therefore, these
reductions to other domains may present practical and scala-
bility problems (Zhang et al. 2014) and may not fully utilize
the special characteristics of the bipartite graph.

Out of other approximation work (Geerts, Goethals, and
Mielikäinen 2014), it is worth noting the problem of finding
the number of edges to be deleted such that the resulting
graph is a 2–approximation maximum edge biclique (Hoch-
baum 1998), and the finding of near complete bicliques (Li
et al. 2008; Liu, Li, and Wang 2008; Mishra, Ron, and
Swaminathan 2003; Mishra, Ron, and Swaminathan 2004;
Sim et al. 2006; Sim et al. 2009; Sim et al. 2011).

Zhang et al. (2014) introduced the iMBEA algorithm for
the enumeration of maximal bicliques in a bipartite graph.
The algorithm uses an efficient branch-and-bound technique
to prune away non-maximal subtrees of the search tree. De-
spite the theoretical complexity of an exponential run-time,
the algorithm outperforms the previous state-of-the-art algo-
rithms: (i) MICA (Alexe et al. 2004) – the best known gen-
eral graph algorithm; and (ii) LCM-MBC (Li et al. 2007) –
a prime frequent closed itemsets algorithm (an improvement
of LCM (Uno, Kiyomi, and Arimura 2004) algorithm).

Recent work by Shaham, Yu, and Li (2016) used a sub-
space clustering approach for finding the maximum edge bi-
clique in a bipartite graph. The algorithm, named BSC
(Biclique Subspace Clustering), uses random projections to

obtain seed patterns, which are later grown into maximal
edge bicliques. The repetitive projections ensure a probabil-
istic guarantee on the finding of the maximum edge biclique.
The algorithm is reported to be at least four orders of mag-
nitude faster than the iMBEA algorithm on both artificial
and real-world datasets.
 To the best of our knowledge, only a few papers have
been published in the specific field of demand aggregation
for procurement (Chew 2017; Chowdhary et al. 2011; Wang
and Miller 2005). These papers use a naïve one-dimension
aggregation strategy, which suffers from the “curse of di-
mensionality” (Bellman 1961; Beyer et al. 1999; Kriegel,
Kröger, and Zimek 2009), and from sensitivity to text de-
scriptions variability and the effectiveness of the similarity
measure used.

Conclusions and Future Work
Aggregating procurement demands could lead to better
value-for-money and substantial cost savings for large or-
ganizations. This paper describes our experience in devel-
oping an AI solution for demand aggregation and deploying
it in A*STAR, a large governmental research organization
in Singapore with procurement expenditure in the scale of
hundreds of millions of dollars annually.

We formulate the demand aggregation problem using a
bipartite graph model depicting the relationship between
procured items and target vendors. We then show that iden-
tifying maximal edge bicliques within that graph would re-
veal potential demand aggregation patterns. We propose an
unsupervised learning methodology for efficiently mining
such bicliques using a novel Monte Carlo subspace cluster-
ing approach. While the method can be viewed as an effec-
tive heuristic, we show that there is a strong theoretical base
for its efficacy. The algorithm enhances the BSC algorithm.
As such, not only it inherits the theoretical analysis, but also
achieves lower complexity bounds and higher detection
probability.
 A proof of concept prototype was developed and tested
with the end users during 2017, and later trialed and itera-
tively refined, before being rolled out in 2019. The final per-
formance achieved on past cases benchmark was: 71% of
past DAs transformed into bulk tenders were correctly de-
tected by the engine. The performance for new opportunities
pointed out by the engine was 81% (i.e., 81% of the newly
identified cases were deemed useful cases for potential bulk
tender contracts in the future). Additionally, per each valid
DA identified, the engine achieved (in terms of POs) 100%
precision (all aggregated POs identified by the engine were
correct), and 79% recall (the engine correctly identified 79%
of POs that should have been put into the DAs). Overall, the
direct cost savings from the true positive contracts spotted

so far are estimated to be S$7 million annually (this in addi-
tion to potential savings due to reduced legal and administra-
tion overheads).
 As part of future work, we are exploring further improve-
ments in accuracy and scalability of the core algorithm. In
addition, we plan to license the technology to a local com-
pany to handle the technical support and maintenance, and
productize and commercialize it further.

References
Alexe, G.; Alexe, S.; Crama, Y.; Foldes. S.; Hammer, P. L.; and
Simeone, B. 2004. Consensus Algorithms for the Generation of All
Maximal Bicliques. Discrete Applied Mathematics 145(1): 11–21.
Ambühl, C.; Mastrolilli, M.; and Svensson, O. 2011. Inapproxima-
bility Results for Maximum Edge Biclique, Minimum Linear Ar-
rangement, and Sparsest Cut. SIAM Journal on Computing 40(2):
567–596.
Bartolini, A. 2011. Innovative Ideas for the Decade, Technical Re-
port. Ardent Partners Research.
Bellman, R. 1961. Adaptive Control Processes: A Guided Tour.
Princeton, NJ: Princeton University Press.
Ben-Dor, A.; Chor, B.; Karp R.; and Yakhini, Z. 2003. Discovering
Local Structure in Gene Expression Data: The Order-Preserving
Submatrix Problem. Journal of Computational Biology 10 (3-4):
373–384.
Beyer, K.; Goldstein, J.; Ramakrishnan, R.; and Shaft, U. 1999.
When is “Nearest Neighbor” Meaningful?. In Proceedings of the
International Conference on Database Theory, 217–235. Berlin,
Heidelberg: Springer Berlin Heidelberg.
Cheng Y., and Church G. M. 2000. Biclustering of Expression
Data. In Proceedings of the International Conference on Intelligent
Systems for Molecular Biology, 93–103. Palo Alto, CA: AAAI
Press.
Chew, T. H. 2017. Procurement Demand Aggregation. In Business
Analytics: Progress on Applications in Asia Pacific, edited by J. L.
C. Sanz, 664–684. Singapore: World Scientific.
Chowdhary, P.; Ettl, M.; Dhurandhar, A.; Ghosh, S.; Maniachari,
G.; Graves, B.; Schaefer, B.; and Tang, Y. 2011. Managing Pro-
curement Spend Using Advanced Compliance Analytics. In Pro-
ceedings of the IEEE International Conference on e-Business En-
gineering, 139–144.
Dawande, M.; Keskinocak, P.; Swaminathan, J. M.; and Tayur, S.
2001. On Bipartite and Multipartite Clique Problems. Journal of
Algorithms 41(2): 388–403.
Eppstein, D. 1994. Arboricity and Bipartite Subgraph Listing Al-
gorithms. Information Processing Letters 51(4): 207–211.
Feige, U. 2002. Relations Between Average Case Complexity and
Approximation Complexity. In Proceedings of the ACM Sympo-
sium on Theory of Computing, 534–543. New York, NY: Associ-
ation for Computing Machinery.
Feige, U.; and Kogan, S. 2004. Hardness of Approximation of the
Balanced Complete Bipartite Subgraph Problem, Technical Report
MCS04-04. The Weizmann Institute of Science.
Ganter B., and Wille, R. 1999. Formal Concept Analysis. Berlin,
Heidelberg: Springer Berlin Heidelberg.
Garey, M. R, and Johnson D. S. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman.

Geerts, F.; Goethals, B.; and Mielikäinen, T. 2004. Tiling Data-
bases. In Proceedings of the International Conference on Discov-
ery Science, 278–289. Berlin, Heidelberg: Springer Berlin Heidel-
berg.
Goerdt, A., and Lanka, A. 2004. An Approximation Hardness Re-
sult for Bipartite Clique. Technical Report 48. Electronic Collo-
quium on Computation Complexity.
Hochbaum, D. S. 1998, Approximating Clique and Biclique Prob-
lems. Journal of Algorithms 29(1): 174–200.
Kloks, T., and Kratsch, D. 1995. Computing a Perfect Edge With-
out Vertex Elimination Ordering of a Chordal Bipartite Graph. In-
formation Processing Letters 55(1): 11–16.
Kriegel, H. P.; Kröger, P. and Zimek, A. 2009. Clustering High-
Dimensional Data: A Survey on Subspace Clustering, Pattern-
Based Clustering, and Correlation Clustering. ACM Transactions
on Knowledge Discovery from Data 3(1): 1–58.
Kunegis, J. 2013. KONECT – The Koblenz Network Collection.
In Proceedings of the International Conference on World Wide
Web Companion, 1343–1350. New York, NY: Association for
Computing Machinery
Li, J.; Liu, G.; Li, H.; and Wong, L. 2007. Maximal Biclique Sub-
graphs and Closed Pattern Pairs of the Adjacency Matrix: A One-
to-One Correspondence and Mining Algorithms. Transactions on
Knowledge and Data Engineering 19(12): 1625–1637.
Li, J.; Sim, K.; Liu, G.; and Wong, L. 2008. Maximal Quasi-Bi-
cliques with Balanced Noise Tolerance: Concepts and Co-Cluster-
ing Applications. In Proceedings of the SIAM International Con-
ference on Data Mining, 72–83.
Liu, G.; Sim, K.; and Li, J. 2006. Efficient Mining of Large Maxi-
mal Bicliques. In Proceedings of the International Conference on
Data Warehousing and Knowledge Discovery, 437–448.
Liu, X.; Li, J.; and Wang, L. 2008. Quasi-Bicliques: Complexity
and Binding Pairs. In Proceedings of the International Computing
and Combinatorics Conference, 255–264.
Lonardi, S.; Szpankowski, W.; and Yang, Q. 2006. Finding Biclus-
ters by Random Projections. Theoretical Computer Science
368(3): 217–230.
Makino, K., and Uno, T. 2004. New Algorithms for Enumerating
All Maximal Cliques. In Proceedings of the Scandinavian Work-
shop on Algorithm Theory, 260–272.
Melkman, A. A., and Shaham, E. 2004. Sleeved CoClustering. In
Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 635–640.
Mishra, N.; Ron, D.; and Swaminathan, R. 2003. On Finding Large
Conjunctive Clusters. In Proceedings of the 16th Annual Confer-
ence on Learning Theory and 7th Kernel Workshop, 448–462.
Mishra, N.; Ron D.; and Swaminathan, R. 2004. A New Concep-
tual Clustering Framework. Machine Learning 56: 115–151.
Mushlin, R. A.; Kershenbaum, A.; Gallagher, S. T.; and Rebbeck,
T. R. 2007. A Graph-Theoretical Approach for Pattern Discovery
in Epidemiological Research. IBM Systems Journal 46(1): 135–
149.
Nussbaum, D.; Pu, S.; Sack, J. R.; Uno, T.; and Zarrabi-Zadeh, H.
2010. Finding Maximum Edge Bicliques in Convex Bipartite
Graphs. In Proceedings of the International Computing and Com-
binatorics Conference, 140–149.
Peeters, R. 2003. The Maximum Edge Biclique Problem is NP-
Complete. Discrete Applied Mathematics 131(3): 651–654.

Procopiuc, C. M.; Jones, M.; Agarwal, P. K.; and Murali, T. 2002.
A Monte Carlo Algorithm for Fast Projective Clustering. In Pro-
ceedings of the International Conference on Management of Data,
418–427.
Sanderson, M. J.; Driskell, A. C.; Ree, R. H.; Eulenstein, O.; and
Langley, S. 2003. Obtaining Maximal Concatenated Phylogenetic
Data Sets from Large Sequence Databases. Molecular Biology and
Evolution 20(7): 1036–1042.
Shaham, E.; Yu, H.; and Li, X. L. 2016. On Finding the Maximum
Edge Biclique in a Bipartite Graph: A Subspace Clustering Ap-
proach. In Proceedings of the SIAM International Conference on
Data Mining, 315–323.
Shaham, E.; Westerski, A.; and Kangasabai, R. 2019. Method and
Apparatus for Procurement Demand Aggregation. International
Patent No. WO2019231390A1.
Sim, K.; Li, J.; Gopalkrishnan, V.; and Liu, G. 2006. Mining Max-
imal Quasi-Bicliques to Co-Cluster Stocks and Financial Ratios for
Value Investment. In Proceedings of the International Conference
on Data Mining, 1059–1063.
Sim, K.; Li, J.; Gopalkrishnan, V.; and Liu, G. 2009. Mining Max-
imal Quasi-Bicliques: Novel Algorithm and Applications in the
Stock Market and Protein Networks. Statistical Analysis and Data
Mining 2 (4): 255–273.
Sim, K.; Liu, G.; Gopalkrishnan, V.; and Li, J. 2011. A Case Study
on Financial Ratios via Cross-Graph Quasi-Bicliques. Information
Sciences 181(1): 201–216.
Swaminathan, J. M., and Tayur, S. R. 1998. Managing Broader
Product Lines Through Delayed Differentiation Using Vanilla
Boxes. Management Science 44(12): 161–172.
Tomita, E.; Tanaka, A.; and Takahashi, H. 2006. The Worst-Case
Time Complexity for Generating All Maximal Cliques and Com-
putational Experiments. Theoretical Computer Science 363(1):
28–42.
Uno, T.; Kiyomi, M.; and Arimura, H. 2004. LCM ver. 2: Efficient
Mining Algorithms for Frequent/Closed/Maximal Itemsets. In Pro-
ceedings of the ICDM Workshop on Frequent Itemset Mining Im-
plementations 126.
Wang, G. and Miller, S. 2005. Intelligent Aggregation of Purchase
Orders in E-Procurement. In Proceedings of the IEEE International
EDOC Enterprise Computing Conference, 27–36.
Westerski, A.; Kangasabai, R.; Wong, J.; and Chang H. 2015. Pre-
diction of Enterprise Purchases Using Markov Models in Procure-
ment Analytics Applications. Procedia Computer Science 60:
1357-1366.
Westerski, A.; Kangasabai, R.; and Sim, K. 2017. Method of De-
tecting Fraud in Procurement and System Thereof. International
Patent No. WO2017116311A1.
Zaki, M. J., and Hsiao, C. J. 2002. CHARM: An Efficient Algo-
rithm for Closed Itemset Mining. In Proceedings of the Interna-
tional Conference on Data Mining, 457–473.
Zaki M. J., and Ogihara, M. 1998. Theoretical Foundations of As-
sociation Rules. In Proceedings of the Workshop on Research Is-
sues on Data Mining and Knowledge Discovery, 71–78.
Zhang, Y.; Phillips, C. A.; Rogers, G. L.; Baker, E. J.; Chesler, E.
J.; and Langston, M. A. 2014. On Finding Bicliques in Bipartite
Graphs: A Novel Algorithm and its Application to the Integration
of Diverse Biological Data Types. BMC Bioinformatics 15(1):
110–127.

