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Abstract 
Procurement is an essential operation of every organization 
regardless of its size or domain. As such, aggregating the de-
mands could lead to better value-for-money due to: (1) lower 
bulk prices; (2) larger vendor tendering; (3) lower shipping 
and handling fees; and (4) reduced legal and administration 
overheads. This paper describes our experience in developing 
an AI solution for demand aggregation and deploying it in 
A*STAR, a large governmental research organization in Sin-
gapore with procurement expenditure to the scale of hundreds 
of millions of dollars annually. We formulate the demand ag-
gregation problem using a bipartite graph model depicting the 
relationship between procured items and target vendors, and 
show that identifying maximal edge bicliques within that 
graph would reveal potential demand aggregation patterns. 
We propose an unsupervised learning methodology for effi-
ciently mining such bicliques using a novel Monte Carlo sub-
space clustering approach. Based on this, a proof-of-concept 
prototype was developed and tested with the end users during 
2017, and later trialed and iteratively refined, before being 
rolled out in 2019. The final performance was 71% of past 
cases transformed into bulk tenders correctly detected by the 
engine; for new opportunities pointed out by the engine 81% 
were deemed useful for potential bulk tender contracts in the 
future. Additionally, per each valid pattern identified, the en-
gine achieved 100% precision (all aggregated purchase or-
ders were correct), and 79% recall (the engine correctly iden-
tified 79% of orders that should have been put into the bulk 
tenders). Overall, the cost savings from the true positive con-
tracts spotted so far are estimated to be S$7 million annually. 

 Introduction   
Procurement is an essential operation of every organization 
regardless of its size, business domain, and sector (i.e., pri-
vate or public). A typical procurement budget can be a sig-
nificant portion of total expenditure, up to 60% of revenues 
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(Bartolini 2011). Knowing its magnitude, companies in-
creasingly invest in optimizing procurement operations by 
reorganizing their practices to root out any inefficiencies or 
problems. This paper describes our experience in develop-
ing an AI solution for demand aggregation and deploying it 
in A*STAR, a large governmental research organization in 
Singapore with procurement expenditure in the scale of hun-
dreds of millions of dollars annually. We were presented 
with a set of digitalized procurement data and had to work 
with certain constraints, such as noisy, incomplete and un-
labeled data scattered across multiple legacy data manage-
ment systems. This is in contrast to academic literature 
which discusses different aspects of procurement manage-
ment based on theoretical frameworks and strong assump-
tions on data scale, labeling and consistency.  
 Large enterprises like A*STAR spend millions on pur-
chases of goods and services. Demand aggregation is the 
process of aggregating the demands for better value-for-
money due to: (1) lower bulk prices; (2) larger vendor ten-
dering; (3) lower shipping and handling fees; and (4) re-
duced legal and administration overheads.  
 Our key insight is in formulating the demand aggregation 
problem using a bipartite graph model which depicts the re-
lationship between procured items and target vendors. The 
need for an AI solution is mainly due to the dataset size. 
While small datasets could settle for eyeballing, datasets of 
moderate size are already hard to handle. In addition, em-
ploying simple techniques (e.g., clustering) will not be ade-
quate due to the “curse of dimensionality” (Bellman 1961; 
Beyer et al. 1999; Kriegel, Kröger, and Zimek 2009). Thus, 
for a solution to be successfully deployed on an unlabeled 
large dataset, and to successfully scale (the dataset might in-
crease in size over time), unsupervised learning techniques 



  

are required. We show that identifying maximal edge bi-
cliques within a bipartite graph would reveal potential de-
mand aggregation patterns. We propose an unsupervised 
learning methodology for efficiently mining such bicliques 
using a novel Monte Carlo subspace clustering approach. 
  
We begin by describing the organizational context and the 
problem description.  

Problem Description 
A*STAR is a large governmental research organization in 
Singapore comprising over 17 research entities and 5000 
staff. Procurement spending of the organization can run into 
hundreds of millions of dollars annually. Given their scale, 
the procurement operations are handled in a decentralized 
manner by individual entities through an online workflow 
comprising several steps (see Figure 1), and are governed 
and audited by a centralized unit called the A*STAR Pro-
curement Office (A*PO) through a predominantly manual 
process.  
 A*PO approached us in 2014 to create a data-driven 
framework towards transforming the manual process of de-
tecting potential lapses, enhancing procurement compli-
ance, and optimizing procurement spend. We embarked on 
the A*STAR Procurement Analytics initiative to develop an 
AI platform for tackling three major challenges: (1) procure-
ment fraud detection; (2) procurement demand forecasting; 
and (3) procurement demand aggregation. Our research on 
the former two problems is reported elsewhere (Westerski 
et.al. 2015; Westerski, Kangasabai, and Sim 2017). 
 This paper focuses on the procurement demand aggrega-
tion problem and reports on our experience in developing an 
AI solution for tackling the problem and deploying it 
A*STAR-wide. Broadly, this was done in two phases: (1) a 
proof-of-concept phase in 2017, where the core method was 
developed by back testing on historical data; and (2) a pilot 
trial and iterative refinement until final roll-out in 2019. A 
high-level description of the algorithm developed during the 
proof-of-concept phase has been filed as a patent (Shaham, 
Westerski, and Kangasabai 2019). In this paper, we provide 
a complete account of both the phases as part of sharing our 
experiences.  
 Demand aggregation is the process of aggregating the de-
mands for goods and services to achieve better value-for-
money in terms of: (1) lower bulk prices; (2) larger vendor 
tendering; (3) lower shipping and handling fees; and (4) re-
duced legal and administration overheads. Large enterprises 
such as A*STAR spend millions of dollars on purchases of 
goods and services. Thus, even a small change in these four 
fields could lead to substantial savings. 
 

To fully appreciate the application, we first describe the pro-
curement data structure.  

Data Structure  
The presented application was developed based on procure-
ment transactional data produced over the course of 8 years 
(from 2009 to 2016, inclusive). The dataset was refreshed in 
subsequent stages of the project to include consecutive 
years. However, to present a consistent and focused evalua-
tion scenario, including comparison of accuracy between 
different project stages, the experiments reported here relate 
to the initial 8 years only. 
 Within this dataset, the key elements that comprise a pur-
chase are related to procedural stages of the procurement 
process as presented in Figure 1: (a) Invitation to Tender 
(ITT) or Invitation to Quotation (ITQ); (b) bid placement 
and approval of selected supplier; and (c) issuance of Pur-
chase Order (PO). The data for typical final stages of pro-
curement process related to delivery of goods and invoicing 
are generally treated as post-procurement process and are 
therefore not included in the discussion in this article. Also, 
as demand aggregation applies only to orders that were suc-
cessfully placed, we will focus on the PO data.  
 Each PO would point to an employee of the organization 
fulfilling the role of buyer (requesting officer) and a hierar-
chy of approving officers (in charge of approving the pur-
chase request). It would also have a creation date (day on 
which requesting officer submitted the information to the 
system) and an approval date. A PO would further consist 
of purchase order items, each of which can relate to a dif-
ferent item or service and contain further details, such as: 
textual item description, quantity of items bought and unit 
price per single item. Similar structure of purchases split 
into items with details of pricing, quantities, descriptions 

Figure 1. Procurement workflow and steps. 



etc. would also be present during earlier stages of (a) and 
(b). It is worth noting that values at all stages can differ – 
starting from expected purchases, to what suppliers offer, to 
what was finally negotiated and approved. 
 Throughout the experiments, we learned that the key fea-
tures that most influenced the capabilities of our algorithm 
were the following five aspects of the procurement data: 
who (requester); what (item description); what type (mate-
rial group); from who (vendor); and when (creation/ap-
proval date).  
 In total, the dataset comprised 1,032,275 POs with 
660,162 distinct items, and 14,834 unique vendors. On av-
erage, a single PO had 2.2 items attached. However, 59% of 
the POs had only 1 order item attached, and 97% had 10 or 
less. Within the remaining 3%, the maximal recorded 
amount of order items per PO was 164. This reflects the 
overall behavior of the organization employees and the pol-
icies in place, which focused on simple orders typically re-
lated to one type of good.  

Application Description 
Aggregating and analyzing the demand using the PO dataset 
is not straightforward, due to the following challenges:  
• Item description was a key field, but it was free text with 

no standard terminology. Also, it was of short length 
(<128 characters) and got truncated if it exceeded.  

• Vendor name was another key field, which had standard 
names for vendors located in Singapore (the names fol-
lowed the official ACRA-registered ones), but not for 
those located overseas.  

• The only labeled data that we could possibly use were the 
53 bulk contracts currently in operation. However, the 
contract descriptions had only a general description of the 
items covered, and the vendor names had poor matches 
with those in the dataset.  

• The scale of the data, although not huge, was large 
enough to make many state-of-the-art unsupervised learn-
ing algorithms (as we later required) infeasible. 

 
 A naïve aggregation strategy could be implemented via 
clustering of PO items (and then by vendors) by suitably de-
fining a text similarity measure (Chew 2017; Chowdhary et 
al. 2011; Wang and Miller 2005). However, such a one-di-
mensional clustering approach has two issues: 
1. It is not adequate for large-scale datasets due to the “curse 

of dimensionality” (Bellman 1961; Beyer et al. 1999; 
Kriegel, Kröger, and Zimek 2009). Furthermore, demand 
aggregation requires an algorithm which can simultane-
ously group subsets of items which relate to subsets of 
vendors (see Figure 2).  

2. On smaller or medium-sized data, its accuracy will be af-
fected by the variability in text descriptions and effec-
tively the similarity measure is fine tuned to tolerate it. 

 
 The relationship between items and vendors could be nat-
urally modeled by a bipartite graph (see example in Figure 
3). Such graphs have been proven useful in modeling a wide 
range of relationship networks (Kunegis 2013; Shaham, Yu, 
and Li 2016). A simultaneous grouping of items and vendors 
within a bipartite graph is called a biclique (see examples in 
Figure 4). Note that a biclique does not require all the items 
(or vendors) to be lexically similar.  
 Biclique detection is a well-known problem in graph the-
ory and data mining, with numerous real-world applications 
across different domains (Ben-Dor et al. 2003; Cheng and 
Church 2000; Dawande et al. 2001; Ganter and Wille 1999; 
Kunegis 2013; Melkman and Shaham 2004; Mishra, Ron, 
and Swaminathan 2003; Mushlin et al. 2007; Nussbaum et 
al. 2010; Sanderson et al. 2003; Swaminathan and Tayur 
1998; Zhang et al. 2014). Given a bipartite graph and its cor-

Figure 2. Simplified example of a procurement database 
containing hidden demand aggregation patterns (patterns 

can overlap). 

Figure 3. Procurement bipartite graph comprising 14 items, 
10 vendors, and the relationship between item 7 and ven-

dor 4 (item 7 was purchased from vendor 4). 



  

responding partition into two disjoint sets of vertices, a bi-
clique is a complete bipartite subgraph such that every ver-
tex of the first partition is connected to every vertex of the 
second partition (see example in Figure 5, where a vertex set 
{i3, i4, i6} and a vertex set {j3, j5} form a biclique). Mathe-
matically, the notion of biclique is defined as follows. 
 
Definition 1. Let G = (U ∪ V, E) be a bipartite graph, where 
U and V are two disjoint sets of vertices, and E is an edge 
set such that ∀(i,j) ∈ E, i ∈ U, j ∈ V. A biclique within G is 
a couple (set pair) (I, J) such that I ⊆ U, J ⊆ V and ∀i ∈ I, j 
∈ J, (i, j) ∈ E. 
 
 The computational complexity of finding the maximum 
biclique depends on the exact objective function used. In 
contrast to the well-known maximum clique problem 
(Makino and Uno 2004; Tomita, Tanaka, and Takahashi 
2006), the maximum biclique problem has three distinct var-
iants, with the following objective function µ(I, J): 
1. µ(I, J) = |I| × |J| — known as the MAXIMUM EDGE BI-

CLIQUE problem. The problem was proved to be NP-
complete (Lonardi, Szpankowski, and Yang 2006; 
Peeters 2003), and challenging to approximate (Ambühl, 
Mastrolilli, and Svensson 2011; Feige 2002; Feige and 
Kogan 2004; Goerdt and Lanka 2004; Peeters 2003). 

2. µ(I, J) = |I| , where |I| = |J| — known as the BALANCED 
COMPLETE BIPARTITE SUBGRAPH problem (also 
known as the balanced biclique problem). The problem 

was proved to be NP-complete (Garey and Johnson 
1979). 

3. µ(I, J) = |I| + |J| — known as the MAXIMUM VERTEX 
BICLIQUE problem. The problem can be solved in poly-
nomial time using a minimum cut algorithm (Hochbaum 
1998; Garey and Johnson 1979). 

 
 To achieve better value-for-money, demand aggregation 
aims to encapsulate the largest possible number of purchas-
ing orders, and to “replace” them with one order. i.e., replace 
|I|×|J| individual purchasing orders (|I| items bought from |J| 
vendors) with one purchasing order (which includes the |I| 
items from e.g., the cheapest vendor). As such, we focus on 
the problem of finding the set of maximal edge bicliques 
(potentially overlapping). Each such maximal edge biclique 
will serve as a potential demand aggregation. We propose 
an efficient Subspace Biclique Clustering for Procurement 
(SBCP) algorithm to tackle this challenging problem. Ex-
tensive experimentations on artificial and real-world pro-
curement datasets demonstrate the superiority of our pro-
posed SBCP algorithm over state-of-the-art techniques. 

Use of AI Technology 
We are now ready to present the SBCP algorithm. Firstly, 
we describe a Monte Carlo algorithm for extracting a list of 
maximal bicliques. Next, we prove that the list contains op-
timal bicliques. Finally, we present the run-time analysis of 
the algorithm.  

Finding Maximal Bicliques 
For ease of readability, we adopt the graph’s adjacency ma-
trix representation, defined as follows (see the example in 
Figure 5b, which is the adjacency matrix representation of 
the bipartite graph G in Figure 5a). 
 
Definition 2. Let G = (U ∪ V, E) be a bipartite graph such 
that |U| = m, and |V| = n. The adjacency matrix X of graph 
G is a [m × n] matrix such that Xi,j = 1 if (i,j) ∈ E and Xi,j = 
0 otherwise. 

Figure 5. (a) Bipartite graph G; and (b) its corresponding 
adjacency matrix, comprising the maximum edge biclique 

({i3, i4, i6}, {j3, j5}) of size 6 edges and 5 vertices. 

Figure 4. Example of (a) procurement bipartite graph comprising: (b) biclique of 6 items x 2 vendors ({i2, i3, i4, i5, i6, i7} × 
{v2, v3}); (c) biclique of 3 items x 4 vendors ({i2, i3, i4} × {v2, v3, v4, v5}); and (d) biclique of 2 items x 3 vendors ({i2, i13} × 

{v3, v6, v7}). 



 The input of the SBCP algorithm is therefore an adja-
cency matrix X of a given bipartite graph G, consisting of 
only boolean numbers, namely 0 and 1. The output of the 
SBCP algorithm is a list of maximal bicliques, i.e., a list of 
submatrices of ones, representing maximal bicliques within 
G (the graph may contain multiple, possibly overlapping, 
maximal bicliques). The SBCP algorithm itself uses a sub-
space clustering approach (Lonardi, Szpankowski, and 
Yang 2006; Procopiuc et al. 2002; Shaham, Yu, and Li 
2016). This common technique uses iterative random pro-
jection (i.e., a Monte Carlo strategy) to obtain the biclique’s 
seed, which is later expanded into a maximal biclique. 

The SBCP Algorithm 
Algorithm 1 presents the SBCP algorithm. As in the case of 
many Monte Carlo algorithms, the structure of the SBCP al-
gorithm is very simple, and can be divided into the follow-
ing stages: 
(i) Seeding (lines 2–4): a random selection of a set of rows 
to serve as a seed of the maximal biclique. 
(ii) Addition of rows and columns (lines 5–20): interleaved 
accumulation of rows (lines 9–14) and columns (lines 15–
20), which comply with the rows and columns already accu-
mulated. 
(iii) Polynomial repetition (line 1): repetition of the above 
two steps provides a probabilistic guarantee of acquiring a 
set of maximal bicliques. 
 
Remark 1. The Monte Carlo nature of the SBCP algorithm 
is revealed in phase (i) where random seeds are generated. 
The subspace clustering nature of the SBCP algorithm is re-
vealed in phases (ii), where the seed of phase (i) is expanded 
to form a maximal subset of rows over a maximal subset of 
columns, i.e., a maximal biclique. 
 
Remark 2. To ease readability, lines 10 and 16 use the short 
notations of: Xi,J = 1 and XI,j = 1, respectively, which have 
the meaning of: ∀j ∈ J, Xi,j = 1 and ∀i ∈ I, Xi,j = 1, respec-
tively. 
 
Remark 3. The SBCP algorithm has an inherent ability to 
mine multiple, possibly overlapping, bicliques by utilizing 
the independent random projection on each repetitive run, to 
reveal columns and rows relevant only to a specific biclique. 
 
Remark 4. The SBCP algorithm is not designed for the enu-
meration of all maximal bicliques, which may be exponen-
tial in size (Eppstein 1994; Zhang et al. 2014). The algo-
rithm has a polynomial number of iterations, and thus, the 
size of the return list is also polynomial. However, we next 
prove that the returned list contains, with a fixed probability, 
optimal bicliques. 
 

Algorithm 1: SBCP algorithm for extracting a list of 
maximal bicliques. 

 

Input: X, a [m × n] matrix of boolean numbers. 
Output: List of maximal bicliques.  
Initialization: Setting of N, |P| and |S| is discussed in 
the following section. 
 
1: loop N times 
2:  // Seeding phase 
3:  choose a subset of rows P uniformly at random; 
4:  set I ← P, J ← ∅; 
5:  // Interleaving row and column addition phase 
6:  set isAddRow ← False; 
7:  set row i ← 1, column j ← 1; 
8:  while row i ≤ m or column j ≤ n do 
9:   if isAddRow then // row addition 
10:    if Xi,J = 1 then 
11:    add i to I; 
12:   i ← i + 1; 
13:   if j ≤ n then 
14:    isAddRow ← !isAddRow 
15:  else // column addition 
16:   if XI,j = 1 then 
17:    add j to J; 
18:   j ← j + 1; 
19:   if i ≤ m ⋀ (|J| ≥ |S| ⋁ j > n) then 
20:    isAddRow ← !isAddRow 
21: return list of (I, J); 
 

 

 

Optimality of the Algorithm 
Clearly, the proposed SBCP algorithm can be viewed as a 
heuristic method. Next, we prove that there are solid theo-
retical reasons for this efficacy. 
 The SBCP algorithm derives inspiration from the BSC al-
gorithm (Shaham, Yu, and Li 2016). The motivation to en-
hance the BSC algorithm is to avoid its tendency to be stuck 
in local maxima, which results in mining degenerated bi-
cliques, i.e., bicliques that have large number rows but small 
number of columns (or the other way around, i.e., small 
number of rows and large number of columns). Such degen-
erated bicliques are less applicable, particularly in an indus-
trial scenario usage such as demand aggregation. Next, we 
outline the intuition behind the SBCP algorithm. For de-
tailed argumentations, proofs, run-time analysis, and com-
parisons to existing algorithms, we refer the reader to Sha-
ham, Yu, and Li (2016).  
 The intuition behind the BSC algorithm is that once we 
successfully draw a discriminating column set (subset of the 
rows), we can use it to collect the biclique’s columns, and 
only then, use the collected columns in order to collect the 



  

biclique’s rows. The mechanism behind the SBCP algorithm 
is similar. Unlike the BSC algorithm which collects all of 
the biclique’s columns and only then collects all of the bi-
clique’s rows, the SBCP algorithm collects the biclique’s 
rows and columns in an alternating fashion. The intuition is 
that an alternating expansion of the initial discriminating set 
would result in an ever-growing discriminating set. This 
promises better discriminating results (see Theorem 3.1 and 
Experiment I (Shaham, Yu, and Li 2016)), which in turn 
leads to a better detection probability (see Theorem 3.2 
(Shaham, Yu, and Li 2016)), which results in an overall re-
duced run-time (see Subsection 3.3 (Shaham, Yu, and Li 
2016)). 

Run-time 
The run-time is polynomial: mnO(1) (see Subsection 3.3 
(Shaham, Yu, and Li 2016)). 

Application Use and Payoff  
The implementation of the SBCP algorithm to create a prac-
tical procurement solution for A*PO was an iterative pro-
cess. Prior to achieving its final version, the solution under-
went three major rounds of evaluation. Each evaluation ran 
the refined algorithm over a dataset of Purchasing Orders 
(POs), passing the mined Demand Aggregation (DA) pat-
terns, with their related POs, to a procurement officer for 
evaluation. The quality of the algorithm was assessed using 
the following metrics: (1) precision; (2) recall; (3) profes-
sional assessment of usefulness for newly detected and un-
known DA patterns according to A*PO expertise; and (4) 
number of patterns matching with existing DAs, i.e., 33 pre-
viously known DAs curated by A*PO legacy methods. For-
mally, those are defined are follows:  

1.		+,-./0/12 = 	 456/7	+80
566	9/2-7	+80 

2.		;-.566 = 	 456/7	+80
,-6-452<	+80	 

3.		+,1>-00/1256	500-009-2< = 	 2-?	456/7	@A0
566	2-?	9/2-7	@A0	 

4.		C5<.ℎ/2E	?/<ℎ	-F/0</2E	@A0 = 	7-<-.<-7	G50<	@A0<1<56	G50<	@A0  

 The above metrics were picked in order to reflect the rel-
evant aspects of A*PO operations. Metrics (1) and (2) were 
calculated with respect to POs within each detected pattern, 
i.e., determining the quality of each pattern regardless to 
how many patterns were detected in total. Furthermore, the 
procurement officer would treat POs listed by the algorithm 
as a starting point, and further investigate using traditional 
A*PO techniques whether other orders should have been in-
cluded. Metrics (3) and (4) focus on the assessment of the 

mined DAs from a past and future business perspective. The 
evaluation of precision, recall and professional assessment 
employed an additional constraint: each was calculated 
based on 30 randomly picked DAs out of all returned by the 
algorithm. Such methodology was necessary as the evalua-
tion of each pattern took considerable time and it was im-
possible for A*PO staff to look through all detected patterns 
during each evaluation round. 
 For the first round of evaluation, we began with running 
the SBCP algorithm on the entire A*STAR procurement da-
tabase for the years 2009 to 2016 (inclusive). To recall from 
Section 2, the database comprises 660,162 items, 14,834 
vendors, and 1,032,275 POs.  
 The evaluation by A*PO found various issues (e.g., price 
depreciation, coarse/grained clusters). Following A*PO 
feedback, we added domain constraints (encapsulating 
A*PO best practices) in the next two evaluation rounds: 
1. Use of only the most recent 3 years (i.e., years 2014–

2016). This resulted in a database comprising 271,219 
items, 7,319 vendors, and 391,671 POs. 

2. Filter out patterns with less than 20 POs a year. 
3. Filter out patterns with a value less than S$70,000 a year. 
4. Filter out patterns with a descending price trend (trend 

calculated as linear regression). 
5. Allow patterns to fail once on the above filters. 
 

After incorporating these new constraints, the SBCP 
miner found 643 patterns. The final performance (see Figure 
6) achieved 71% detected legacy DAs (the existing DAs that 
were not identified by the engine were A*PO manually 
crafted DAs, which violated A*PO-imposed domain con-
straints). The performance for new DAs mined by the engine 
was 81% (i.e., 81% of the newly identified DAs were 

Figure 6. Evaluation progress. 



deemed by A*PO staff as useful cases for potential future 
bulk tender contracts, to be thoroughly investigated by 
A*PO). Furthermore, all POs assigned to the valid DAs 
were correctly mined (100% precision); at the same time, 
the valid DAs were determined 79% complete in terms of 
listed POs in comparison to what the procurement officer 
thought should have been reported (79% recall).  
 A*PO calculated the estimation of the incurred savings 
resulting from the usage of DAs, as follows. First, from a 
chosen DA, a potentially discounted price is calculated as 
the cheapest item price among an item subcluster. This is 
repeated for all subclusters and subsequently for all DAs. In 
the second step, the discounted price is computed by com-
paring with actual prices for items in the last 3 years. The 
total savings were estimated to be > S$7 million, after ac-
counting for cost appreciation. Although this is an approxi-
mation, note that additional discounts from buying in bulk 
and potential cost savings from reduced legal and admin-
istration overheads were not included. Thus, we believe the 
estimate is quite conservative. 

Application Implementation and Deployment 
In practice, in a production scenario, new demand aggrega-
tion patterns need a rather lengthy time period in order to 
surface. Therefore, at deployment stage the algorithm did 
not need to run constantly processing the stream of incom-
ing purchase orders in real-time. Instead, A*PO aimed to use 
the system as a decision-supporting mechanism for their an-
nual management reports. At bootstrap, our system was used 
to reveal past patterns from historical data which were un-
known to A*PO. Moving forward, as new purchases are 
made and new data comes in, the system’s purpose is to give 
suggestions of new/modified patterns to the procurement of-
ficer; those patterns would subsequently be reviewed man-
ually by the officer and, if useful, recommend to manage-
ment for new contracting/tendering decisions. To that end, 
the deployed application had the following characteristics as 
described below. 

Implementation 
The SBCP algorithm was implemented in Java 8, and de-
ployed on a multi-core server running CentOS, using com-
mon libraries such as Apache 2.0 + LGPL, Commons Math, 
FastUtil and JavaCSV.  

Input/Output 
The input was extracted out of A*PO systems as a CSV for-
mat comprising the following attributes: (1) requester name; 
(2) item description; (3) material group; (4) vendor name; 
and (5) creation/approval date. 
 The output was also in the form of a CSV report format, 
accompanied by a dashboard analytics tool (see Figure 7). 

Deployment Tweaks and Lessons Learned 
As part of our partnership, A*PO personnel were deeply in-
volved in all stages of the project. Algorithmic decisions, 
such as to model the procurement dataset as a bipartite rela-
tionship graph and to use bicliques to represent demand ag-
gregation patterns, were explained to our collaborators. 
Consequently, A*PO procurement officers were able to give 
us active feedback on refinements, which iteratively helped 
to improve the algorithm’s performance. Although a number 
of these tweaks are hard to quantify, they were equally im-
portant for A*PO in terms of the deployment and practical 
use of the solution:  
1. Adjusting output to preference and analysis capability 

and capacity of the end users: during the first evaluation, 
we discovered that our end users were overwhelmed by 
the amount of potential demand aggregation patterns. The 
SBCP algorithm, as other biclique mining algorithms, 
strives to deliver a complete set of all possible bicliques. 
However, in practical terms, this abundance turns out to 
be counterproductive to the end users, as it is too much to 
digest. A constant communication of the results to the us-
ers led to incorporating business rules, which helped to 
trim and consolidate the demand aggregation patterns list, 
and to meet the end users’ needs and capacity. 

2. The classic evaluation via precision and recall measure-
ments did not turn out to be particularly relevant from a 
business standpoint of A*PO: the end users were not in-
terested in patterns which in their understanding seemed 
obvious (i.e., patterns which could be established by a 
skilled procurement officer even without data examina-
tion or with little effort via BI tools). This resulted in a 
ranking mechanism on top of the SBCP algorithm, which 
up-votes “interesting” and “non-obvious” patterns. The 
criteria for those were discussed throughout the evalua-
tions and involved incorporating additional data fields 

Figure 7. Dashboard analytics view. 



  

(e.g., item categories, requesting officers, approving of-
ficers, historical purchasing trends), in combination with 
various thresholds and rules. 

3. Redefining requirements for the validity of DA patterns: 
previous patterns curated manually by A*PO considered 
the aggregation of purchases across different material 
groups as valid. However, this turned out to be less valu-
able when using our algorithm, as it resulted in a greatly 
increased number of patterns and generated patterns with 
weak business logic. Therefore, we enabled the output 
system to break down the mined DAs into their material 
groups’ components. 

Maintenance 
Future maintenance was an important criterion during the 
application design. With a lean IT team supporting A*PO, 
we designed the system with loosely coupled data applica-
tion and UI layers, where the data exchange between the lay-
ers happens via CSV files in pre-defined formats. Thus, the 
end users and supporting IT team have full flexibility in up-
dating the data feed into the application in view of future 
database upgrades and in maintaining the Tableau UI should 
there be new requirements. 
 Support for the application layer is currently provided by 
our team. Our future plan is to license the technology to a 
local company to handle the technical support and mainte-
nance, and also productize it and commercialize further. 

Related Work 
The MAXIMUM EDGE BICLIQUE problem has received 
much attention in academic research in recent years due to 
its wide range of applications in areas such as bioinformatics 
(Ben-Dor et al. 2003; Cheng and Church 2000; Sanderson 
et al. 2003), epidemiology (Mushlin et al. 2007), formal con-
cept analysis (Ganter and Wille 1999), manufacturing prob-
lems (Dawande et al. 2001), molecular biology (Nussbaum 
et al. 2010), machine learning (Mishra, Ron, and Swamina-
than 2003), management science (Swaminathan and Tayur 
1998), database tiling (Geerts, Goethals, and Mielikäinen 
2004), and conjunctive clustering (Mishra, Ron, and 
Swaminathan 2003).  

Most of the algorithms tackling the problem can be di-
vided into the following three main categories: (i) exploita-
tion of some class of graph; (ii) relaxation of the problem by 
bounding a characteristic of a graph; and (iii) reduction to 
other domains. Among the algorithms in the first category 
we can find: limitation to chordal bipartite graphs (Kloks 
and Kratsch 1995), and limitation to convex bipartite graphs 
(Alexe et al. 2004; Kloks and Kratsch 1995; Nussbaum et 
al. 2010). Among the algorithms in the second category we 
can find: bounding the graph’s vertices degree (Alexe et al. 
2004; Liu et al. 2006), bounding the graph’s arboricity 

(Eppstein 1994), and bounding the biclique’s size (Liu et al. 
2006; Sanderson et al. 2003). Among the algorithms in the 
last category we can find: reduction to maximal clique 
(Makino and Uno 2004; Tomita, Tanaka, and Takahashi 
2006), and reduction to frequent itemsets (Li et al. 2007; 
Uno, Kiyomi, and Arimura 2004; Zaki and Hsiao 2002).  

The reduction of the problem to finding a maximal clique 
has the benefit of a well-researched field with an abundance 
of heuristics and approximation algorithms (recall that the 
problem is NP-complete (Peeters 2003)). However, in order 
to perform such reduction, an inflation of the bipartite graph 
is needed, which makes the problem computationally im-
practical due to the large number of edges it adds. 

The reduction of the problem to frequent itemsets bene-
fits, as above, by relying on a rich field of research. How-
ever, it contains other difficulties. Literature has shown 
(Zaki and Ogihara 1998) that a transactional database corre-
sponds to a bipartite graph G = (U ∪ V, E), where U is the 
set of items (itemsets), V is the set of transactions (tids), and 
E is the set of pairs (item, transaction), i.e., an edge in the 
bipartite graph represents a transaction comprising the item. 
Take for example a set of products offered by a supermarket. 
A transaction would be a subset of products (itemset) pur-
chased by a customer. Therefore, finding frequent itemsets 
corresponds to finding bicliques, and finding a maximal fre-
quent closed itemset corresponds to finding a maximal bi-
clique. However, transforming a frequent itemset to a bi-
clique, although requiring a trivial post-processing step, can 
be highly time consuming (Li et al. 2007). Therefore, these 
reductions to other domains may present practical and scala-
bility problems (Zhang et al. 2014) and may not fully utilize 
the special characteristics of the bipartite graph. 

Out of other approximation work (Geerts, Goethals, and 
Mielikäinen 2014), it is worth noting the problem of finding 
the number of edges to be deleted such that the resulting 
graph is a 2–approximation maximum edge biclique (Hoch-
baum 1998), and the finding of near complete bicliques (Li 
et al. 2008; Liu, Li, and Wang 2008; Mishra, Ron, and 
Swaminathan 2003; Mishra, Ron, and Swaminathan 2004; 
Sim et al. 2006; Sim et al. 2009; Sim et al. 2011). 

Zhang et al. (2014) introduced the iMBEA algorithm for 
the enumeration of maximal bicliques in a bipartite graph. 
The algorithm uses an efficient branch-and-bound technique 
to prune away non-maximal subtrees of the search tree. De-
spite the theoretical complexity of an exponential run-time, 
the algorithm outperforms the previous state-of-the-art algo-
rithms: (i) MICA (Alexe et al. 2004) – the best known gen-
eral graph algorithm; and (ii) LCM-MBC (Li et al. 2007) – 
a prime frequent closed itemsets algorithm (an improvement 
of LCM (Uno, Kiyomi, and Arimura 2004) algorithm). 

Recent work by Shaham, Yu, and Li (2016) used a sub-
space clustering approach for finding the maximum edge bi-
clique in a bipartite graph. The algorithm, named BSC  
(Biclique Subspace Clustering), uses random projections to 



obtain seed patterns, which are later grown into maximal 
edge bicliques. The repetitive projections ensure a probabil-
istic guarantee on the finding of the maximum edge biclique. 
The algorithm is reported to be at least four orders of mag-
nitude faster than the iMBEA algorithm on both artificial 
and real-world datasets.  
 To the best of our knowledge, only a few papers have 
been published in the specific field of demand aggregation 
for procurement (Chew 2017; Chowdhary et al. 2011; Wang 
and Miller 2005). These papers use a naïve one-dimension 
aggregation strategy, which suffers from the “curse of di-
mensionality” (Bellman 1961; Beyer et al. 1999; Kriegel, 
Kröger, and Zimek 2009), and from sensitivity to text de-
scriptions variability and the effectiveness of the similarity 
measure used. 

Conclusions and Future Work  
Aggregating procurement demands could lead to better 
value-for-money and substantial cost savings for large or-
ganizations. This paper describes our experience in devel-
oping an AI solution for demand aggregation and deploying 
it in A*STAR, a large governmental research organization 
in Singapore with procurement expenditure in the scale of 
hundreds of millions of dollars annually. 

We formulate the demand aggregation problem using a 
bipartite graph model depicting the relationship between 
procured items and target vendors. We then show that iden-
tifying maximal edge bicliques within that graph would re-
veal potential demand aggregation patterns. We propose an 
unsupervised learning methodology for efficiently mining 
such bicliques using a novel Monte Carlo subspace cluster-
ing approach. While the method can be viewed as an effec-
tive heuristic, we show that there is a strong theoretical base 
for its efficacy. The algorithm enhances the BSC algorithm. 
As such, not only it inherits the theoretical analysis, but also 
achieves lower complexity bounds and higher detection 
probability. 
 A proof of concept prototype was developed and tested 
with the end users during 2017, and later trialed and itera-
tively refined, before being rolled out in 2019. The final per-
formance achieved on past cases benchmark was: 71% of 
past DAs transformed into bulk tenders were correctly de-
tected by the engine. The performance for new opportunities 
pointed out by the engine was 81% (i.e., 81% of the newly 
identified cases were deemed useful cases for potential bulk 
tender contracts in the future). Additionally, per each valid 
DA identified, the engine achieved (in terms of POs) 100% 
precision (all aggregated POs identified by the engine were 
correct), and 79% recall (the engine correctly identified 79% 
of POs that should have been put into the DAs). Overall, the 
direct cost savings from the true positive contracts spotted 

so far are estimated to be S$7 million annually (this in addi-
tion to potential savings due to reduced legal and administra-
tion overheads). 
 As part of future work, we are exploring further improve-
ments in accuracy and scalability of the core algorithm. In 
addition, we plan to license the technology to a local com-
pany to handle the technical support and maintenance, and 
productize and commercialize it further. 
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